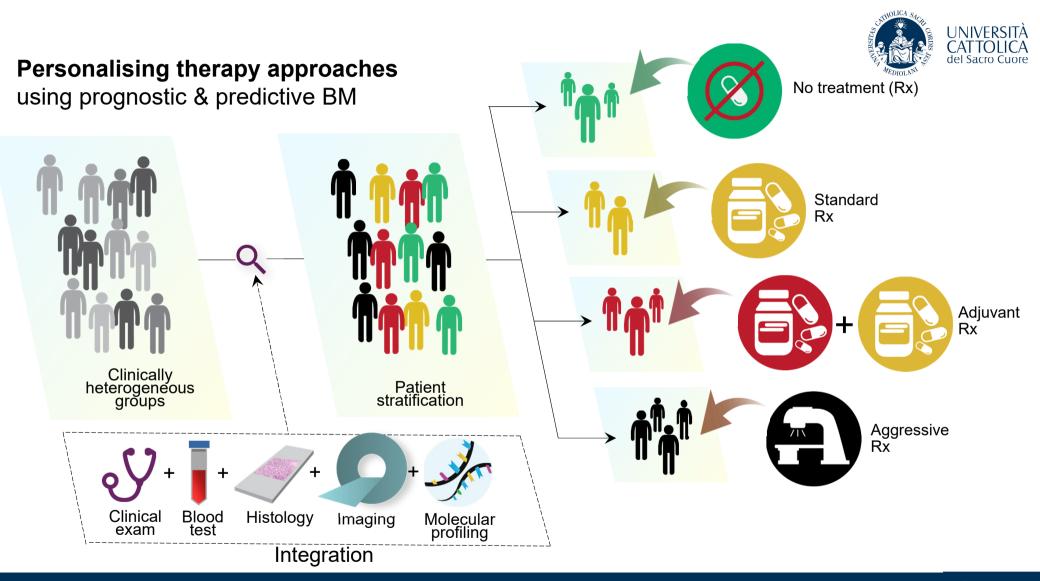
MRO.ART, Rome, Italy

Quantitative imaging for radiation oncologists

Evis Sala, MD, PhD, FRCR, FRCP

Disclosures

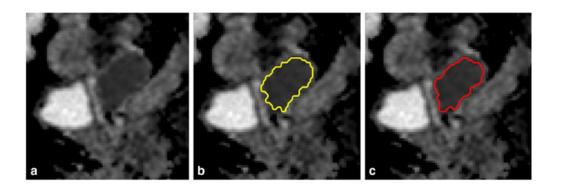
- Co-founder and shareholder, Lucida Medical
- Research support, GEHC, Canon
- Speaker's bureau, GEHC, Canon



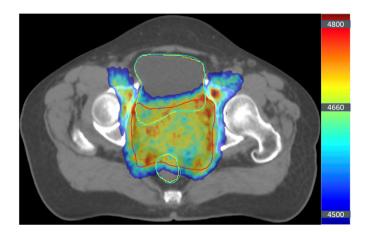
Outline

- Lesion identification and segmentation/contouring
- Clinical decision support fo treatment selection
- Assessment of treatment response
- Prediction of outcome

Challenges in tumour response assessment

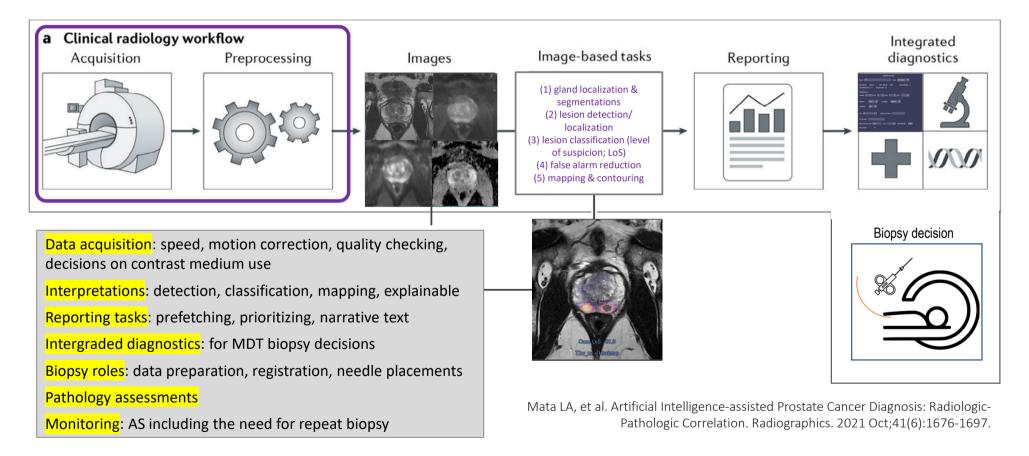

- RECIST is ill-suited, especially for confluent multi-site disease
 - Automated whole-volume tumour and sub tissue segmentation
- Quantification and monitoring of intra/inter-tumoural heterogeneity
 - Quantitative imaging (e.g. ADC)
 - Robust Radiomics
 - Habitat Imaging (Spatial radiomics)
 - Biological validation
- Detection of treatment resistance
 - Tumour site-level information and integration of ctDNA are needed (esp. in neoadjuvant setting)
- Multimodal and multiomics data integration for assessment of therapy response
 - AI for multi-omics data integration and modelling

Segmentation: Cervical cancer



- DL-based auto-segmentation
- 160 patients; DWI images as input
- GS: manual segmentations (9 and 11 yearexperienced radiologists)
- DSC test set: 0.82

Organs at risk


- DL-based auto-segmentation for radiotherapy
- 127 patients (105 : 22)
- High similarity for bladder, femoral head, kidneys, and pelvic bone, (mean DSC > 0.94).

AI assistance in the MRI diagnosis workflow

Workflow integration and automation

AI examples

Lucida: "semi-automated" concurrent reading for preprocessing, acceptance, and rejection. Patient & lesion prioritization. Report generation.

Siemens AI: requires radiologists to run the AI and results are accepted, rejected, or edited. Report generation. Biopsy export.

Quantib: heatmap that radiologists must segment & classify manually. Manual report.

Semi-automated concurrent reading

· > c	A Not secure 192.168.23	3 4.181 /studies/				12 × 18 G	44 🎨 🌧 🗖 🥋 :
Research Use Only							
Show	25 🗸						
#	Patient ID	Study Date	Images	Reports	Status	Overall AI Score	Lesion AI Scores
101	PSSC267931	20211001T000000			Processed	43	4.3 4.1 4.0 3.8
100	PSSC112863	20210903T000000			()		
96	PSSC112863	20230905T000000			Processed	3.7	3.7 3.5 3.3 3.2
94	PSSC268254	20230905T000000			Processed	4.4	4.4 3.9 3.8 3.7
93	PSSC253426	20210727T000000			Processed	19	No AI lesion finding
92	Siemens_Prostate_AI_15	20150120T000000			Processed	3.7	3.7 3.2 2.9
91	PSSC265983	20230511T000000			Processed	3.3	3.3 3.3 3.3 3.0
89	PSSC254605	20220822T000000			Processed	3.2	3.2 3.1 3.0 3.0
88	PSSC265724	20230428T000000			Processed	4.0	4.0 3.9 3.6 3.2
85	254891	20210930T000000			Processed	4.5	4.5 3.6
79	PSSC265453	20230810T000000			Processed	3.9	3.9 3.2
75	Siemens_Prostate_AI_11	20210727T000000			Processed	29	2.9
74	Siemens_Prostate_AI_09	20160520T000000			Processed	43	4.3 3.9 3.7 3.6
73	Siemens_Prostate_AI_09	20180718T000000			Processed	3.8	3.8 3.7 3.3 3.3

Actionable Prostate MRI Report

ARC

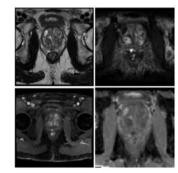
Acvanced Radiology Cente

Fondazione Policinico Universitario Agostino Gemeli Sede Legale F.Vito, 1 - 00168 Roma Sede operative L.go A. Gemelli, 8 - 00168 Rome Codice Fiscale s PJVA 13109681000 TEL +39 0630151

Dels Emme :	Nonografico	
Pazianta :	fints.	
Data marita	UDC:	
Col. Secilario	ULD :	

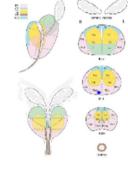
^		
Gemel	Шi	
		- TEALS

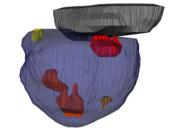
Fondazione Policlinico Universitario Agostino Gemelli Sede Legale F.Vito, 1 - 00168 Roma Sede operativa L.go A. Gemelli, 8 - 00168 Roma Codice Fiscale e P.IVA 13109681000 TEL. +39 0630151

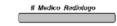

Dala Isana .	Nasagrafika
Paziente :	Stato
De la nusci n	the ·
Cod. Sanitario	CLD.

TECHACA D'ERAME: Eseme senguio ed aris campo ST, moderno imaging multiperendolos con sequenzo T4W e T2W, D4R ed acquistatore dimenica dopo acemeninteccione en el redo paramagnetico Gesidanticio 18 ml. QUALTY D'ELE BILLADEL Soura, H-CULLA, secret 0. REGELAZIONE Raize PSA; PRA: 7.05 ng/ml. COMPROSITY DEL: Netazia IREPERTI SONO STATI VALUTATI BECONDO I CRITERI PIRADE V2.1.

Report: VOLUME PROBINATICO: 5.0 cm CC x 5.0 cm CC x 5.4 cm LL ; Vol = 74.41 cc; PSA DENSITY: 0.00 ng/miko; IPRAFILAR PROBINTICA DECNOMA: 51 PRESILIZA DI AREE ENCORMANCHE: No LEXECUT: LEXECUT: # 1: Area (pointenue nelle sequenze T2W che misure: 9mm. LLanguan y 11 Aros ponterne nois ecoloris 12W chi meuni: term. 2014: Periferia LOGALIZZAZIONE: enightendols DX, in sede Posteriore, in regione medio-ghiendolene, in sellore PZpm. CARATTERISTICHE DWI: periferentifi in DWI con Bauel velori di ADC; CARATTERISTICHE DC2: enismosment Precose. CARTEGORIA PI-RADix 4

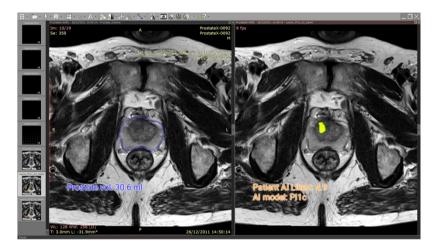

ESTENSIONE EXTRA-PROSTATICA: No ESTENSIONE VERCICOLE SCHEMALE No VERCICA de Mazo. LINFRADENDALEGALE: No VERSAMENTO: Si cole takis fuida nello cenvo p LENCOL COLLETERALI: Mission bilitaraia.


CONCLUSION: Lasione \$1 di 6 mm nei astiane PZane e desire, in regione medio-phiendolane, PI-RAD8 4



T.S.R.M.

UCRIS, il



Actionable Imaging in Prostate Cancer

ARTIFICIAL INTELIGENCE GUIDED FOCAL THERAPY IN PROSTATE CANCER

Multi-stage AI analysis system to support prostate cancer delination

Interventional Radiotherapy (brachytherapy) for high dose delivery and organ at risk sparing

better local control of the disease less side effects more rapid procedures

Tagliaferri L, Alemanno G, Fionda B et al. Multiparametric imaging guided HDR interventional radiotherapy (brachytherapy) boost in localized prostate cancer: a multidisciplinary experience. Eur Rev Med Pharmacol Sci. 2023; Article in Press A R C Suchanek J et al, Multi-stage Al analysis system to support prostate cancer diagnostic imaging EuSoMII Virtual Annual Meeting, 24 October 2020

Extraordinary Heterogeneity

Within a patient's tumour

Between patients

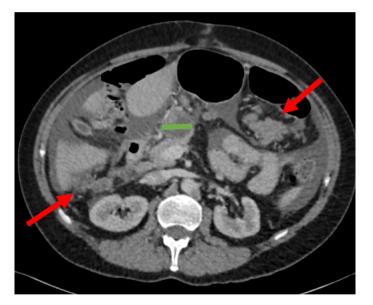
Time

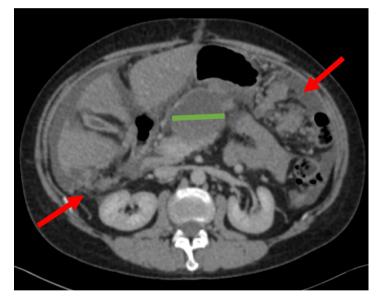
McPherson A, et al. Nat Genet 2016; Zhang K, et al. Cell 2018; Sala E, et al. Clin Radiol 2017

Challenge:

 Heterogeneity within a single lesion doesn't capture the entire tumour volume TME heterogeneity which drives the treatment resistance in the metastatic setting

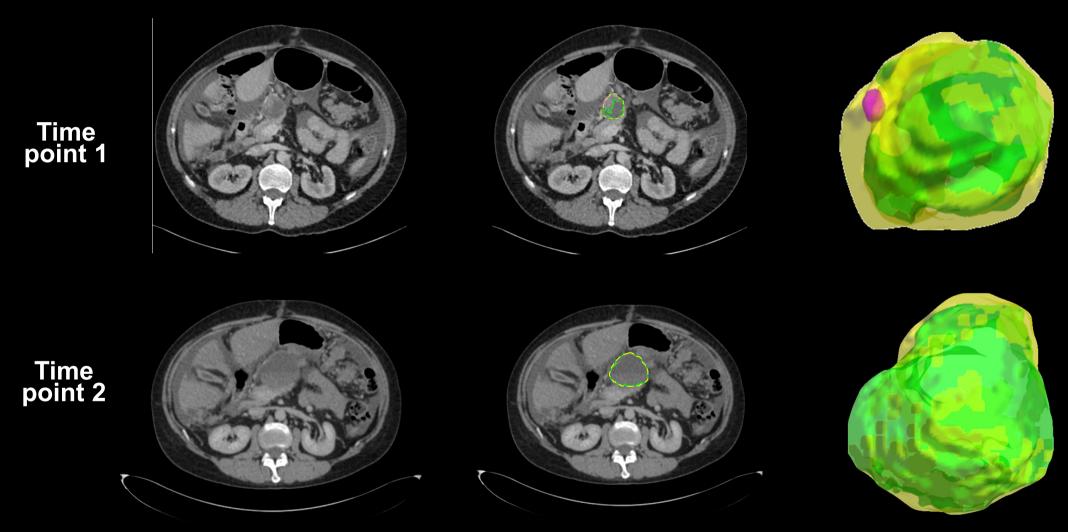
Opportunity:


 Development of new computational methods (AI & radiomics) to capture both spatial and temporal heterogeneity of the entire tumour and unravel distinct phenotypes of the TME


Ovarian Cancer: assessment of response to NACT

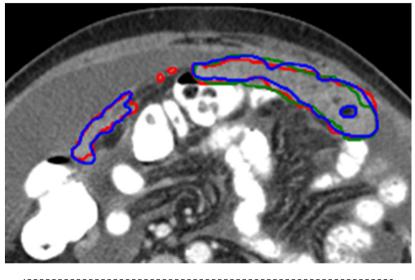
Time point 1

Time point 2


RECIST evaluation:

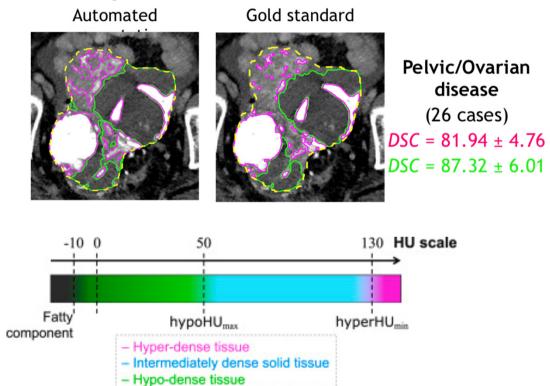
- Lesser sac implant has doubled in size
- Splenocolic and Morrison pouch implants are stable

Progressive disease



Lesser sac lesion

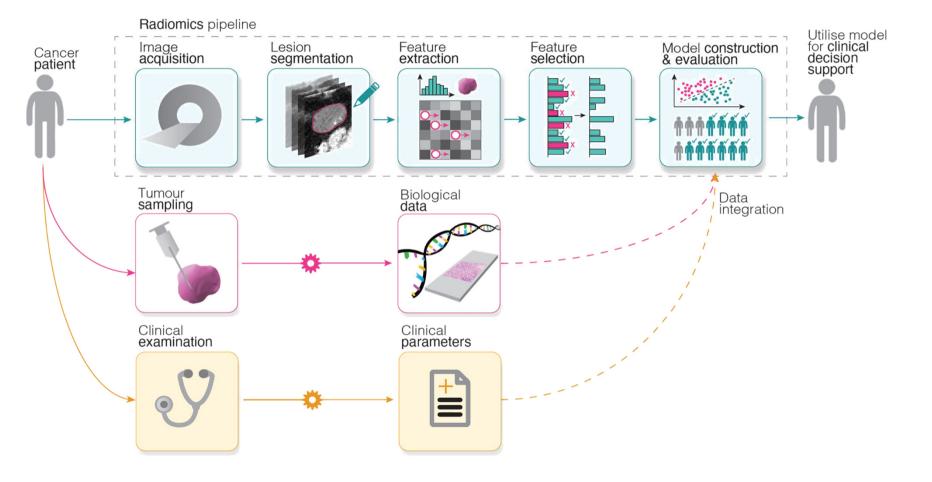
Whole tumour automatic segmentation



– Automatic	– Observer 1	– Observer 2

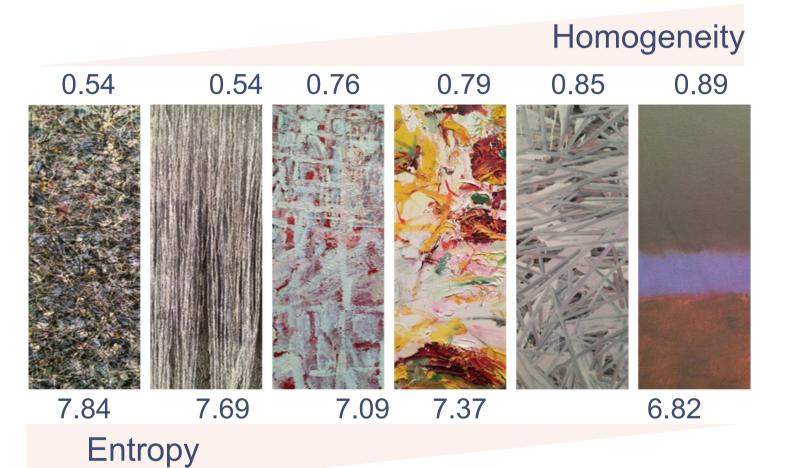
Obs 1	vs. Obs 2	<i>DSC</i> = 71.41
Auto	<i>vs</i> . Obs 1	<i>DSC</i> = 71.85
Auto	vs. Obs 2	<i>DSC</i> = 72.26

Sub-segmentation


Rundo L, et al. Computers in Biology and Medicine, 2020 Buddenkotte T, et al. Eur Rad Exp, 2023

UNIVERSITÀ CATTOLICA del Sacro Cuore

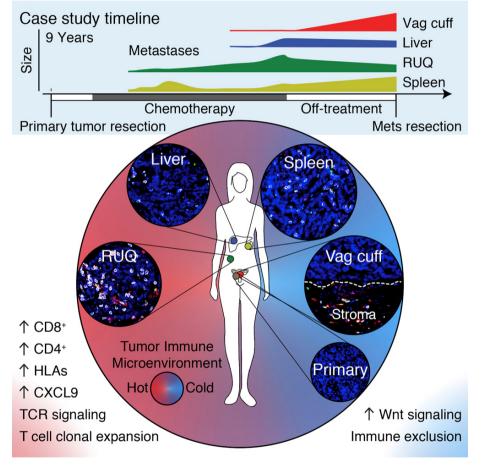
Radiogenomics Framework



A (bit) of art history

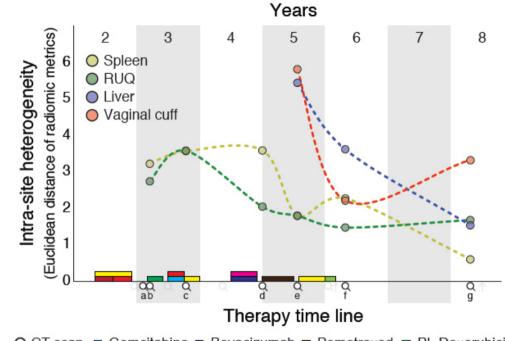
(Randomness)

f) Mark Rothko


a-e) Jackson Pollock

Are Heterogeneous Outcomes of Metastatic Lesions Linked to Immune Escape in Ovarian Cancer?

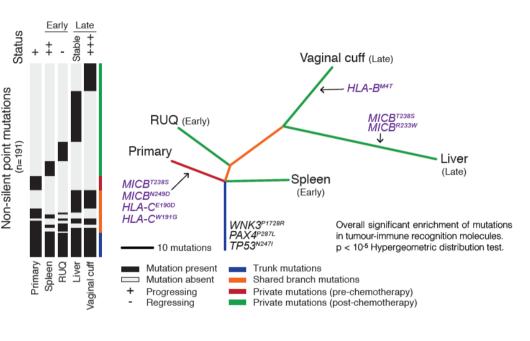
o)ARC



Reuben A. et al. NPJ Genom Med 2017; Jimenez... Sala... Snyder, Miller. Cell 2017

- The interaction between cancer, host immune response and chemotherapy is largely unknown
- Analysis (in both space and time) of patient matched primary and metastatic disease is crucial
- Metastatic tumors exhibit intra-patient heterogeneous tumour growth and somatic mutation patterns after multi-line chemotherapy

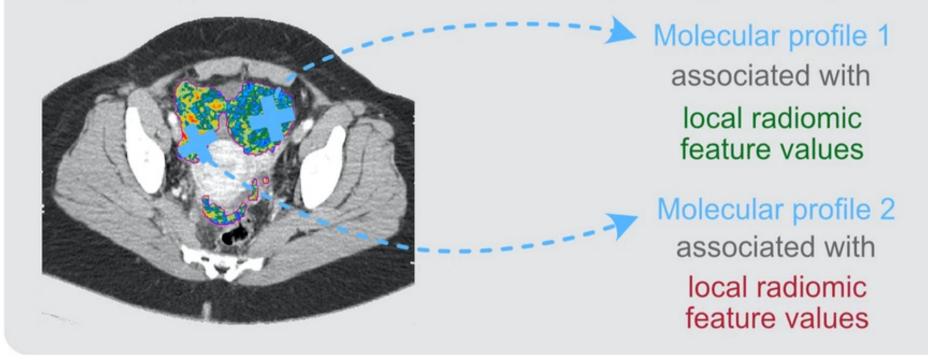
Understanding tumour immune microenvironment in HGSOC


Q CT scan Gemcitabine Bevacizumab Pemetrexed PL Doxorubicin

■ Cyclophospahmide ■ IP cisplatin ■ Paclitaxel ■ Topotecan ■ IV carboplatin

- Late metastases (liver & vaginal cuff) are phenotypically more heterogeneous
- Is there a matching genomic heterogeneity?

Late metastases (liver & vaginal cuff) have a higher mutation rate



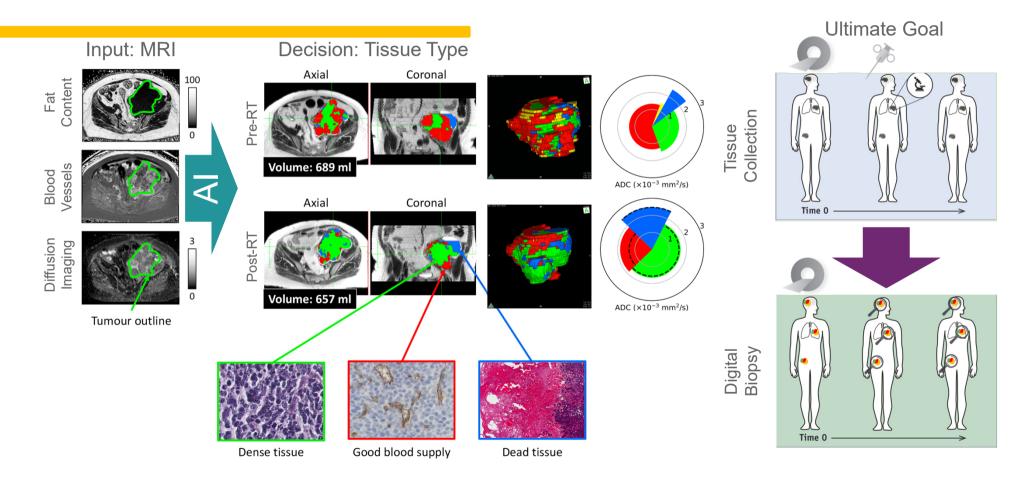
"Spatial" Radiogenomics

Targeted approach: radiomic maps + multiple targeted biopsies

Habitat imaging predicts genetic heterogeneity

Multiparametric Imaging FDG-PET DW-MRI DCE: Ovary Omentum Green Yellow K-means clustering **Ovary yellow** DNA 7q11 Amp 2q11 Amp **Ovary** green POT1 TP53 **Ovary blue** 16p12 Amp 6p21 Amp 18q23 HomDel **Omentum blue**

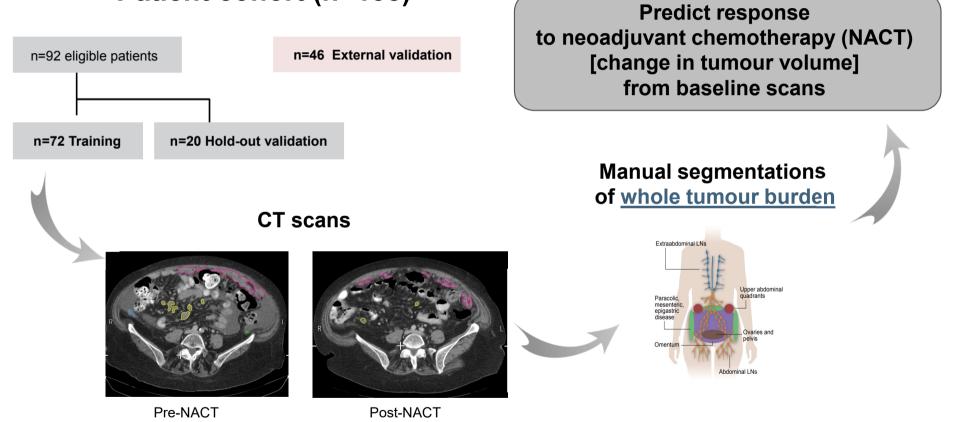
Weigelt B, Vargas AH, et al. JCO Precision Oncology 2019; Jimenez-Sanchez A, et al. Nat Genet 2020


Blue

Yellow

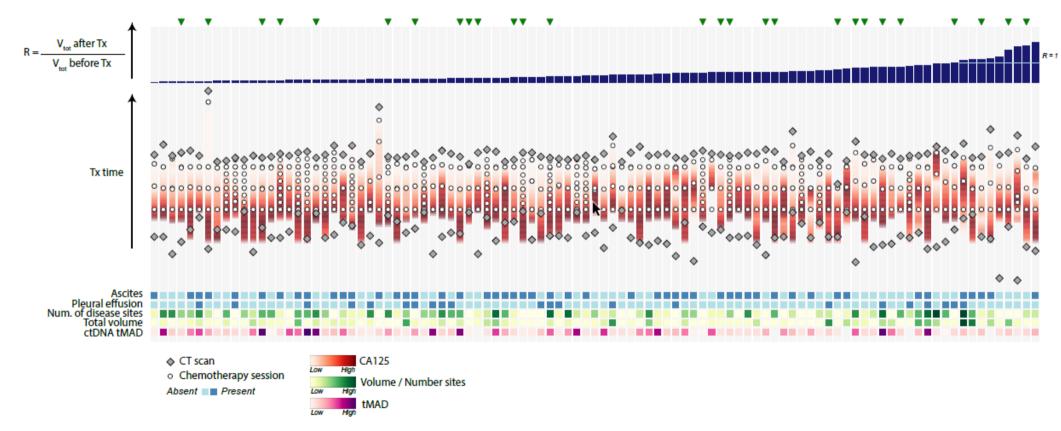
Habitat Imaging for Virtual Biopsy

Supervised Machine-Learning Enables Segmentation and Evaluation of Heterogeneous Post-treatment Changes in Multi-Parametric MRI of Soft-Tissue Sarcoma


Matthew D. Blackledge¹⁺⁷, Jessica M. Winfield^{1,3+7}, Aisha Miah^{3,4}, Dirk Strauss⁵, Khin Thway³⁺⁸, Veronica A. Morgan^{1,2}, David J. Collins^{1,2}, Dow-Mu Koh^{1,2}, Martin O. Leach^{1,2} and Christina Messiou^{1,2+}

Radiogenomic response predictor for HGSOC

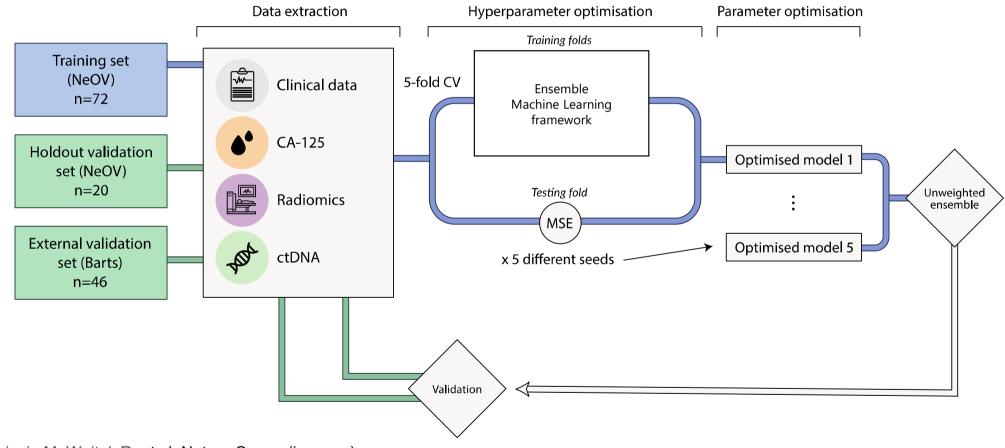
Patient cohort (n=138)



Crispin-Ortuzar M & Woitek R et al. Nat Comm (in press)

Data integration for response prediction

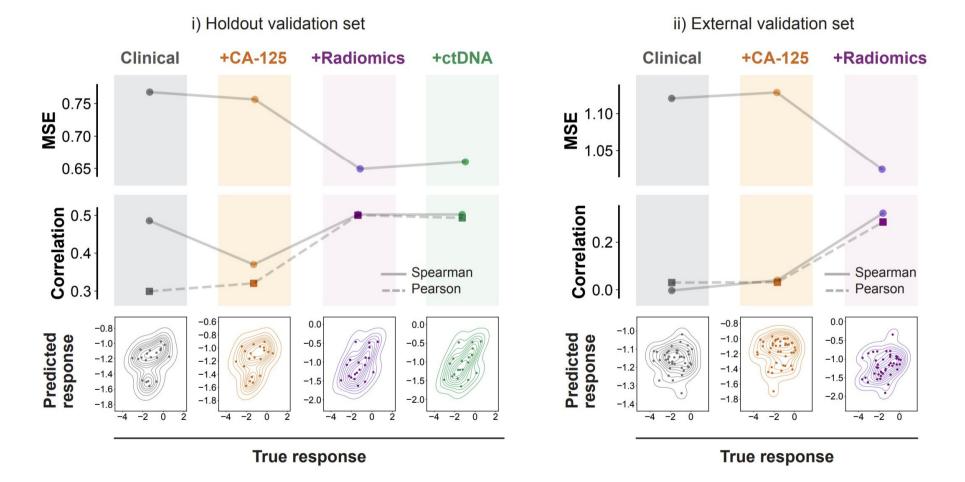
Can we predict response to NACT at baseline and help patient stratification?



We have curated a rich integrated dataset including clinical data, CA 125, radiomics, and ctDNA

Crispin M, Woitek R, et al. Nature Comm (in press)

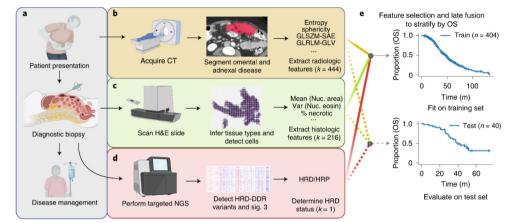
Data integration improves response prediction

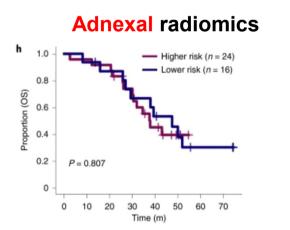

Our ML framework integrates clinical data, CA 125, radiomics, and ctDNA

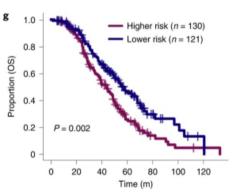
Crispin M, Woitek R, et al. Nature Comm (in press)

Data integration improves response prediction

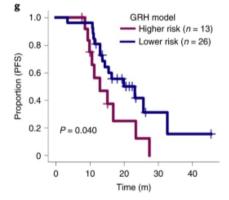
Clinical data, CA 125, radiomics, and ctDNA with external validation


Crispin M, Woitek R, et al. Nature Comm (in press)


Radiogenomics for patient stratification


Patient stratification based on multiomics

- CT
- H&E tissue sections (dig. Pathology)
- HRD/HRP (NGS)



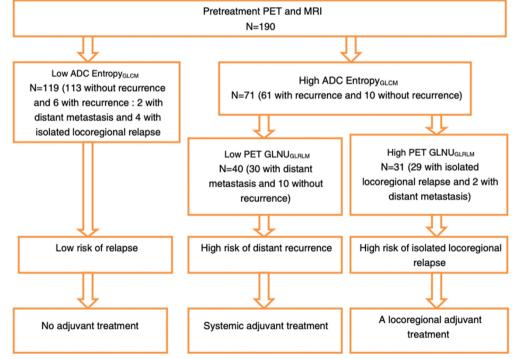
Omental radiomics

Multimodal data (incl. omental radiomics)

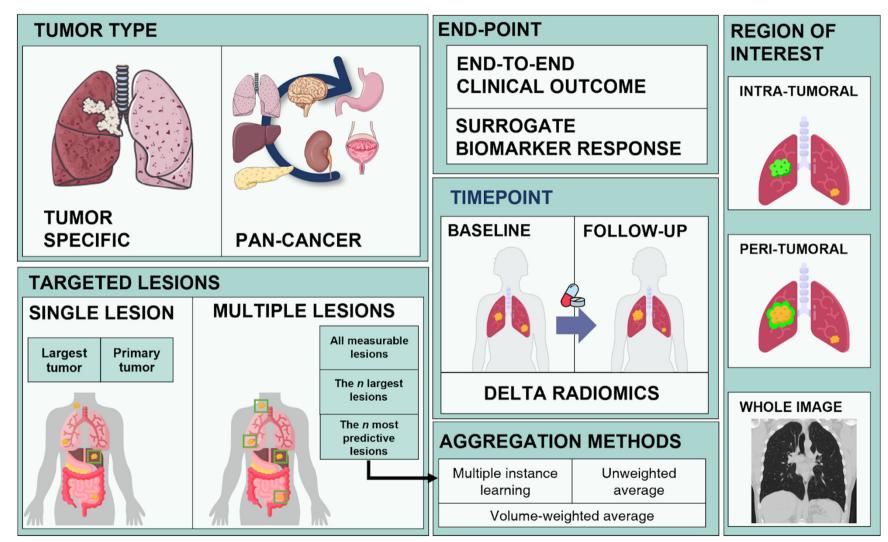
Boehm et al. Nat Cancer 2022

Cervical cancer: Prediction of response to CTRT/DFS

- LACC standard treatment: CT-RT + brachytherapy
- 60-90% complete response rate
- Early identification of poor responders \rightarrow adjust treatment consequently

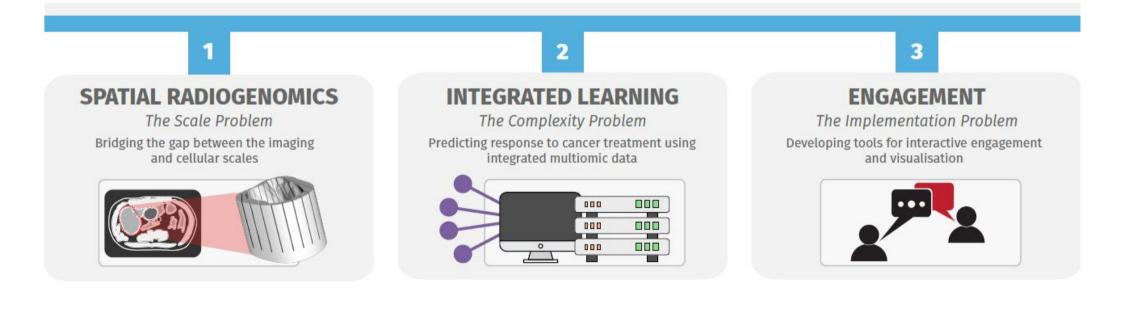

External validation of a previously developed radiomic model:

- GLNU_{GLRLM} derived from PET/CT predicts LRC
- Entropy_{GLCM} derived from ADC map predicts DFS


Powerful predictors of the efficacy of CT-RT before treatment with higher accuracy than standard post-treatment metabolic response assessment

Higher value of $GLNU_{GLRLM}$ and $Entropy_{GLCM} \rightarrow$ worse outcome

 \rightarrow more heterogeneous tumours have poorer prognosis



Radiomics Framework

Vision (next 5 years)

Develop integrated frameworks that bridge the gap between imaging and cellular scales (research line 1), predict response to treatment (research line 2), and engage interactively with patients and clinicians (research line 3)

CANCER RESEARCH UK

CAMBRIDGE CENTRE

Delivering a New Paradigm of Personalised Cancer Medicine

Special thanks to:

- ✓ Luca Boldrini
- ✓ Luca Tagliaferri
- ✓ Ramona Woitek
- ✓ Mireia Crispin-Ortusar
- ✓ Lorena Escudero
- ✓ Leonardo Rundo
- ✓ Cathal McCague
- ✓ Maria Delgado
- ✓ James Brenton

freeman michael veeraraghavan graves dennis nadeem elizabeth irene grant moskowitz e b martin mauraruth gnanapragasam k anna ajimenez stephanie nicolas fuk james ^phelen micco wibmer andreas robin enricak debra scelzo abu susan Ze efsky grisham shinya jimenez stephanie john abu suristan ^{quiu} lomas tristan ^{quiu} in junting soslow my karen. Vargas dow lakhman nicholas mclean padhan: nicole linan ilse priest yulia carol de suit sarah boris ahmed sosa slitane forstner brenton kay igakin crjsalahebert kataoka joubert deen chaya hedvigevis david addley mary mercedes garcia lawrence chiara nougaret n alberto mark h warren collins wadgin gill rustum robert sutton alberto mark h warren collins wroer beddy harini moyle goldman crawford resphileving charlotte helena caroline ishill joubert deen chaya teseph levine charlotte helena caroline ishill christine burger eastham yakar jason nyree edward richard lee douglas hodgkin weitgang

