'Modern' dose distributions: what should we not forget?

Uulke van der Heide

Using CT to delineate the target volume

Example: prostate cancer

Standard: homogeneous dose to entire prostate

Using multi-parametric imaging to differentiate dose inside the target volume

Example: prostate cancer

Standard: homogeneous dose to entire prostate

New: escalate dose at location of highest tumor burden

Using multi-parametric imaging to differentiate dose inside the target volume

Example: prostate cancer

Standard: homogeneous dose to entire prostate

New: escalate dose at location of highest tumor burden

What about uncertainties?

Uncertainties to consider

The radiotherapy chain

beam data

17 steps with a lot of room for errors

Courtesy Marcel van Herk

Uncertainties to consider: target definition

Delineation uncertainties

Prostate

Tumor

Nyholm et al. 2013; Radiat Oncol.

Steenbergen et al. 2015; Radiat Oncol.

Towards a probabilistic definition of target volumes

Express uncertainty in the target definition by probabilities

'Gross Tumor Volume' becomes 'Gross Tumor Map'

Towards a probabilistic definition of target volumes

Express uncertainty in the target definition by probabilities Include likelihood of extra-capsular disease

'Clinical Tumor Volume' becomes 'Clinical Tumor Map'

Uncertainties to consider: positioning uncertainties

Organ motion

Inter-fraction motion

Courtesy Marcel van Herk

Uncertainties to consider: positioning uncertainties

Organ motion Inter-fraction motion Intra-fraction motion

Nederveen et al. Int J Radiat Oncol Biol Phys. 2002 May 1;53(1):206-14

Adapt each fraction to the changing shape of the target

Treatment Assessment

MRI-guided radiotherapy

ICRU report 97: MRI-Guided Radiation Therapy Using MRI-Linear Accelerators

Uncertainties in on-line adaptive radiotherapy

	ATP	ATR	
Simulation/treatment planning			
Match uncertainty planning CT and planning MRI	S	S	
Contouring uncertainty	S	S	
On-line treatment			
Match uncertainty planning CT and adaptation MRI	R	R	
Contouring uncertainty	-	-	
Geometrical uncertainties of the linac	S/R	S/R	
Intra-fraction motion	R	R	

Uncertainties in on-line adaptive radiotherapy

	ATP	ATR	ATS
Simulation/treatment planning			
Match uncertainty planning CT and planning MRI	S	S	-
Contouring uncertainty	S	S	-
On-line treatment			
Match uncertainty planning CT and adaptation MRI	R	R	-
Contouring uncertainty	-	-	R
Geometrical uncertainties of the linac	S/R	S/R	S/R
Intra-fraction motion	R	R	R

Systematic errors may become random in an on-line adaptive workflow

The dose gradient is described with $\sigma_p = 3.2 \text{ mm}$ 90% of patients receives a minimum dose of \geq 95% of the prescribed dose

The dose gradient is described with $\sigma_p = 3.2 \text{ mm}$ 90% of patients receives a minimum dose of \geq 95% of the prescribed dose

10% of patients must not receive the prescribed dose

The dose gradient is described with $\sigma_p = 3.2 \text{ mm}$ 90% of patients receives a minimum dose of \geq 95% of the prescribed dose

10% of patients must not receive the prescribed dose (but not a whole lot less)

Destination

ICR The Institute of Cancer Research

Low-intermediate risk prostate cancer 5 fractions GTV: isotoxic boost up to 45 Gy CTV (prostate): 30 Gy

Planning study

23 patients with intermediate risk prostate cancer treated on Elekta Unity 1.5T T2w MRIs available for adaptation and post-treatment in 5 fractions GTV: 45 Gy, CTV 30 Gy PTV = 0 mm

Time interval between adaptation- and post-MRI mean 18 min [14-27]

Dose coverage of the GTV

D98% > 40 Gy in 90% of fractions

When correcting intra-fraction motion > 2 mm: D98% > 42 Gy in 90% of fractions

Analysis per fraction, renormalized to 5 fractions

Dose coverage of the CTV

D98% > 29 Gy in 90% of fractions When correcting intra-fraction motion > 2 mm: D98% > 30 Gy in 90% of fractions Analysis per fraction, renormalized to 5 fractions

adaptation-MRI

post-MRI

VETHERLANDS CANCER INSTITUTE ANTONI VAN LEEUWENHOEK

'gated' <2 mm

The dose gradient is described with $\sigma_p = 3.2 \text{ mm}$ 90% of patients receives minimally the prescribed dose

Tumor cells are homogeneously distributed in the target volume

Can we estimate the tumor load in the CTV?

61 prostatectomy specimen

84% of patients had multifocal disease (median 3 foci)

32% of foci smaller than 5 mm diameter

Contribution of small foci to total tumor load 2%

Hollmann et al. Radiother Oncol. 2015 Apr;115(1):96-100

Gleason Pattern 3 Gleason Pattern 4

Implications for PTV margins

For CTV the inhomogeneous distribution of tumor cells is not considered in the classical margin recipes

There is a high probability that the underdosed volume contains no cancer at all

The dose doesn't fall to zero

Modern dose distributions: what we shouldn't forget

To express uncertainty, a probabilistic target definition is desirable With on-line adaptive radiotherapy, positioning errors are substantially reduced With ultra-hypofractionation, (almost) all errors become systematic The tumor cells are not homogeneously distributed inside the CTV. This has profound implications for the required PTV margin

Acknowledgements

NKI

Thijs Dassen Ben Neijndorff Peter de Ruiter Thyrza Jagt Tomas Janssen Floris Pos

KWF Elekta

Royal Marsden Hospital/ICR Alison Tree Sunnybrook Danny Vesprini Elekta John Christodouleas University of Wisconsin Robert Jeraj Peter Ferjančič

