

From 2D to 3D: Learned clinical needs for modern treatments

PROF. DR. KARIN HAUSTERMANS

UZ LEUVEN, BELGIUM

From 2D to 3D...

A source of inspiration...

Learned clinical needs #1

We need accurate 3D image information to define and delineate the target and to avoid the OAR

Imaging modalities

3D imaging and target delineation

Bony anatomy & Hand-drawn blocks

Learned clinical needs #2

We need powerful dose calculation algorithms to accurately determine the dose to be delivered

1986!

Collimation

Intensity modulation

Dynamic arc therapy

Learned clinical needs #3

We need the right radiation technology to deliver the correct 3D dose distribution

Technological evolution

Technological evolution

From 2D to 3D: conventional vs conformal

CONVENTIONAL RT

- 2D treatment planning
- Large safety margins
- Inadequate shielding of normal tissues

3D-CONFORMAL RT

- CT-based 3D treatment planning
- Computer-controlled RT delivery
- Better shaping of individual beams to conform shape and size of target volume
- Reduced normal tissue volume exposed to high radiation dose levels

From 2D to 3D: cobalt

From 2D to 3D: linac

Learned clinical needs #4

Improved 3D dose distribution leads to less toxicity and higher tumor control

From 2D to 3D: normal tissue toxicity

Clinical Trial > Lancet. 1999 Jan 23;353(9149):267-72. doi: 10.1016/S0140-6736(98)05180-0.

Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial

D P Dearnaley ¹, V S Khoo, A R Norman, L Meyer, A Nahum, D Tait, J Yarnold, A Horwich

From 2D to 3D: normal tissue toxicity

Significantly fewer men developed radiation-induced proctitis (37% vs $56\% \ge RTOG$ grade 1, p=0.004) and bleeding (5% vs 15% $\ge RTOG$ grade 2, p=0.01) in the conformal group than in the conventional group

From 2D to 3D: tumor control probability

Learned clinical needs #5

Moving away from 2 Gy ...

Fraction *size* is important for *late damage*

_											Q
<u> </u>											
	1900	<i>1910</i>	<i>1920</i>	<i>1930</i>	<i>1940</i>	<i>1950</i>	196 <mark>0</mark>	<mark>197</mark> 0	198) 199	0 2000

Moving away from $2 \boxtimes Gy...$

Rome and the spaghetti plot

The spectrum theory: Hellmann & Weichselbaum

Oligometastases

CANCER TREATMENT is based on an often unstated paradigm of disease pathogenesis. Since 1894, when W.S. Halsted^{1,2} clearly elucidated a mechanism of breast cancer spread and used it to design and support the radical mastectomy, surgical and radiotherapeutic approaches to most cancers have been based on this theory. The Halsted theory proposed that cancer spread is orderly, extending in a contiguous fashion from the primary tumor through the lymphatics to the lymph nodes and then to distant sites. Radical en bloc surgery, such as radical neck dissection in continuity with removal of the primary tumor, radical hysterectomy, and primary and regional irradiation for a variety of tumor sites are all based on this notion of cancer spread. More recently, another hypothesis has gained prominence, also first sug-

more about the multistep nature of the development of malignancy.¹¹⁻¹³ Once tumors become invasive, they may gradually acquire the properties necessary for efficient and widespread metastatic spread.¹⁴ Therefore the likelihood, number, and even sites of metastases may reflect the state of tumor development. This suggests that there are tumor states intermediate between purely localized lesions and those widely metastatic. Such clinical circumstances are not accounted for by either the contiguous or the systemic hypotheses. The systemic hypothesis is binary: metastases either do or do not exist. If present, even if microscopic, they are extensive and widespread. The contiguous hypothesis considers systemic metastases to occur only after nodal disease; but when they occur, they are also blood borne, extensive, and widespread.

Stereotactic Body RadioTherapy

Working mechanism

• Different as compared to conventional fractionation

Conventional fractionation	SBRT
Local effect	Local & systemic (abscopal) effect
Through (in)direct tumor cell death (DNA damage)	Endothelial apoptosis

Reprogramming of the tumor micro-environment

Safety and survival rates associated with ablative SBRT for patients with oligometastatic cancer: a systematic review and meta-analysis

Figure 2. Safety

Α	Acute	grade	3-5	toxic	effects	
---	-------	-------	-----	-------	---------	--

Source	Cases, n	Total patients, n	Median age, y	Median dose	Acute grade 3-5 toxic effects, % (95% CI)				
Ahmed et al,13 2013 (prostate)	0	17	65.0	20 Gy/1 fx; 8-24 Gy/1-3 fx	0.0 (0.0-5.5)	- ÷-			
Chang et al, ¹⁴ 2004 (mixed)	0	15	50.0	30-37.5 Gy/3 fx	0.0 (0.0-6.3)	÷			
Henke et al, ¹⁶ 2018 (mixed)	0	11	64.0	50 Gy/5 fx	0.0 (0.0-8.5)	÷			
lyengar et al, 18 2018 (NSCLC)	0	14	63.5	16-24 Gy/1 fx; 26.5-33 Gy/3 fx; 30-37.5 Gy/5 fx	0.0 (0.0-6.7)				
Ost et al,23 2018 (prostate)	0	25	70.0	30 Gy/3 fx	0.0 (0.0-3.8)	-			
Rusthoven et al, ²⁷ 2009 (mixed)	0	47	58.4	Ph I: 36-60 Gy/3 fx; Ph 2: 60 Gy/3 fx	0.0 (0.0-2.0)				
Scorsetti et al,29 2015 (mixed)	0	42	67.0	75 Gy/3 fx	0.0 (0.0-2.3)				
Sutera et al, ³¹ 2019 (mixed)	3	147	66.4	48 Gy/4 fx	2.0 (0.4-4.9)				
Rusthoven et al, ²⁶ 2009 (mixed)	1	38	58.0	Ph I: 48-60 Gy/3 fx; Ph 2: 60 Gy/3 fx	2.6 (0.0-10.0)	-			
Salama et al,28 2012 (mixed)	2	61	64.4	20-60 Gy/3 fx	3.3 (0.3-9.2)	- i			
Méndez Romero et al, ¹⁹ 2006 (mixed)	2	17	63.0	30-37.5 Gy/3 fx	11.8 (1.3-31.1)	_	-	-	
David et al, ³³ 2020 (breast)	3	15	63.0	20 Gy/1 fx; 28 Gy/2 fx	20.0 (4.4-43.1)		-		
Random-effects model		449			1.2 (0.0-3.8)	•			
Prediction interval					(0.0-10.1)	-			
Heterogeneity: 1 ² = 50% (95% CI, 3%-7	4%), τ =	0.20% (95	% CI, 0.00	$(1.43), \chi_{11}^2 = 22.09 \ (P = .02)$		0 Acute o	20 rade 3-5	40 toxic ef	60 fects

Safety and survival rates associated with ablative SBRT for patients with oligometastatic cancer: a systematic review and meta-analysis

Figure 2. Safety

B Late grade 3-5 toxic effects

Fourse	Cases,	Total patients,	Median	Madian dasa	Late grade 3-5 toxic effects, %	
Source	0	17	age, y	Median dose	(95% (1)	:
Ahmed et al, 13 2013 (prostate)	0	17	65.0	20 Gy/1 fx; 8-24 Gy/1-3 fx	0.0 (0.0-5.5)	-
Chang et al, ¹⁴ 2004 (mixed)	0	15	50.0	30-37.5 Gy/3 fx	0.0 (0.0-6.3)	-
Henke et al, ¹⁶ 2018 (mixed)	0	11	64.0	50 Gy/5 fx	0.0 (0.0-8.5)	
lyengar et al,18 2018 (NSCLC)	0	14	63.5	16-24 Gy/1 fx; 26.5-33 Gy/3 fx; 30-37.5 Gy/5 fx	0.0 (0.0-6.7)	-
Ost et al,23 2018 (prostate)	0	25	70.0	30 Gy/3 fx	0.0 (0.0-3.8)	-
Scorsetti et al, ²⁰ 2015 (mixed)	0	42	67.0	75 Gy/3 fx	0.0 (0.0-2.3)	
Sutera et al, ³¹ 2019 (mixed)	2	147	66.4	48 Gy/4 fx	1.4 (0.1-3.9)	
Rusthoven et al,27 2009 (mixed)	1	47	58.4	Ph I: 36-60 Gy/3 fx; Ph 2: 60 Gy/3 fx	2.1 (0.0-7.9)	-
Rusthoven et al, ²⁶ 2009 (mixed)	2	38	58.0	Ph I: 48-60 Gy/3 fx; Ph 2: 60 Gy/3 fx	5.3 (0.5-14.5)	H
Méndez Romero et al,19 2006 (mixed)	1	17	63.0	30-37.5 Gy/3 fx	5.9 (0.0-21.7)	-
Salama et al, ²⁸ 2012 (mixed)	6	61	64.4	20 Gy/1 fx; 28 Gy/2 fx	9.8 (3.7-18.4)	
Nuyttens et al,22 2015 (mixed)	3	30	66.0	60 Gy/3 fx; 30 Gy/1 fx	10.0 (2.0-23.0)	—
Random-effects model		464			1.7 (0.2-4.6)	\$
Prediction interval					(0.0-12.5)	

Late grade 3-5 toxic effects, %

60

Safety and survival rates associated with ablative SBRT for patients with oligometastatic cancer: a systematic review and meta-analysis

Figure 3. Clinical Benefit

	Cases,	Total patients,	Median		1-y LC
Source	n	n	age, y	Median dose	(95% CI), %
Salama et al,28 2012 (mixed)	76	113	64.4	20-60 Gy/3 fx	67.3 (58.3-75.5)
Nuyttens et al, ²² 2015 (mixed)	45	57	66.0	60 Gy/3 fx; 30 Gy/1 fx	78.9 (67.6-88.5)
Wang et al, ³² 2012 (mixed)	134	166	58.0	27-30 Gy/3 fx	80.7 (74.1-86.2)
Garg et al, ¹⁵ 2012 (mixed)	57	63	61.0	16-24 Gy/1 fx	90.5 (82.8-96.8)
Sutera et al, ³¹ 2019 (mixed)	198	218	66.4	48 Gy/4 fx	90.8 (86.9-94.4)
Scorsetti et al, 29 2015 (mixed)	49	52	67.0	75 Gy/3 fx	94.2 (87.5-99.2)
Rusthoven et al, ²⁷ 2009 (mixed)	60	63	58.4	Ph I: 36-60 Gy/3 fx; Ph 2: 60 Gy/3 fx	95.2 (88.3-99.0)
Muacevic et al, ²¹ 2013 (prostate)	61	64	66.0	20.2 Gy/1 fx	95.3 (89.1-99.2)
Siva et al, 30 2018 (prostate)	48	50	70.0	20 Gy/1 fx	96.0 (90.5-99.9)
Pasqualetti et al, ²⁵ 2018 (prostate)	77	78	NR	24 Gy/1 fx; 27 Gy/3 fx	98.7 (95.0-100)
Rusthoven et al, ²⁶ 2009 (mixed)	63	63	58.0	Ph I: 48-60 Gy/3 fx; Ph 2: 60 Gy/3 fx	100 (98.5-100)
Méndez Romero et al, ¹⁹ 2006 (mixed)	34	34	63.0	30-37.5 Gy/3 fx	100 (97.2-100)
Ost et al, ²³ 2018 (prostate)	25	25	70.0	30 Gy/3 fx	100 (96.2-100)
David et al, ³³ 2020 (breast)	19	19	63.0	20 Gy/1 fx	100 (95.0-100)
Random-effects model		1065			94.7 (88.6-98.6)
Prediction interval					(63.8-100)

1-y LC (95% CI), %

Safety and survival rates associated with ablative SBRT for patients with oligometastatic cancer: a systematic review and meta-analysis

Figure 3. Clinical Benefit

B 1-v Overall survival

Source	Cases, n	patients, n	Median age v	Median dose	1-y OS (95% CI) %			
Pusthovon at al ²⁶ 2009 (mixed)	25	38	58.0	Ph I: 48-60 Gv/3 fv: Ph 2: 60 Gv/3 fv	65.8 (50.3-70.0)			
Ivongar et al ¹⁷ 2014 (NSCLC)	16	74	67.0	19-24 Gv/1fv: 27-33 Gv/3 fv: 35-40 Gv/5 fv	66.7 (47.6-84.1)			
Rusthoven et al. ²⁷ 2009 (mixed)	32	47	58.4	Ph I: 36-60 Gv/3 fx: Ph 2: 60 Gv/3 fx	68.1 (54.8-80.9)			
Wang et al. ³² 2012 (mixed)	107	149	58.0	27-30 Gy/3 fx	71.8 (64.4-78.8)		-	
Garg et al, ¹⁵ 2012 (mixed)	49	61	61.0	16-24 Gy/1 fx	80.3 (69.6-89.3)			_
Scorsetti et al, ²⁹ 2015 (mixed)	34	42	67.0	75 Gy/3 fx	81.0 (68.0-91.3)		∎∔	_
Salama et al, 28 2012 (mixed)	50	61	64.4	20-60 Gy/3 fx	82.0 (70.9-90.2)			_
Sutera et al, ³¹ 2019 (mixed)	123	147	66.4	48 Gy/4 fx	83.7 (77.7-89.5)			-
Palma et al, ²⁴ 2019 (mixed)	56	66	67.0	36-60 Gy/3-8 fx; 16-24 Gy/1fx	83.6 (74.5-91.8)			_
Méndez Romero et al, 19 2006 (mixed)	14	17	63.0	30-37.5 Gy/3 fx	82.4 (64.0-97.2)		_	_
Henke et al, ¹⁶ 2018 (mixed)	10	11	64.0	50 Gy/5 fx	90.9 (68.1-100)			-
Milano et al, ²⁰ 2009 (breast)	37	40	48.0	NR	92.5 (82.7-98.6)		+	_
Nuyttens et al, ²² 2015 (mixed)	28	30	66.0	60 Gy/3 fx; 30 Gy/1 fx	93.3 (82.3-99.4)		+	_
Siva et al, 30 2018 (prostate)	33	33	70.0	20 Gy/1 fx	100 (97.1-100)			
Ost et al, 23 2018 (prostate)	25s	25	70.0	30 Gy/3 fx	100 (96.2-100)			
Random-effects model		791			85.3 (77.0-92.0)		\sim	
					(50.8-100)	·		_

Learned clinical needs #6

A radiation oncologist is 4D superior to 3D!

A real radiation oncologist ...

Learned clinical needs

Conclusions

Conclusion (1)

Lessons learned

- **#1** We need accurate 3D image information to define and delineate the target and to avoid the OAR
- #2 We need powerful dose calculation algorithms to accurately determine the dose to be delivered
- **#3** We need the right radiation technology to deliver the correct 3D dose distribution
- #4 Improved 3D dose distribution leads to less toxicity and higher tumor control
- **#5** Moving away from 2 Gy ...
- **#6** A radiation oncologist is 4D superior to 3D!

Conclusion (2)

The greatest challenge for radiation therapy,

i.e. to obtain the highest probability of cure with the least morbidity,

still remains!

But going from 2D to 3D

brought us already an important step closer to that goal!