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Disclosures

Research collaborations incl. funding, consultancy and speaker honoraria

– Pharma: Roche, Janssen, Bristol-Myers Squibb

– MedTech/Data: Varian - Siemens, Philips, Sohard, Mirada Medical, IQVIA

– Health insurance: CZ Health Insurance 

Spin-offs and commercial ventures

– Maastro Innovations B.V. 

– Medical Data Works B.V.

– Various patents on medical machine learning & Radiomics
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Less likely to survive More likely to survive

Actual survival

Predicting patient outcome
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Why predicting patient outcomes is hard

NSCLC (Lung Cancer)

2 year survival

158 patients

5 MDs

Prospective

AUC: 0.56

Oberije et al. , Radiother Oncol. 2014; 112: 37–43 / J Clin Oncol 2010;28:4268 / JMI 2012 Friedman, Rigby / BMJ Clinical Evidence

• Explosion of data

• Explosion of decisions

• Explosion of ‘evidence’

• Too much to read

• 3 % in trials, bias

• Sharp knife
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Learning health care system – From Evidence Based Medicine to Digital Twins

Evidence Based Medicine 

Digital Twin

J Clin Oncol 2010;28:4268 
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A Digital Patient Twin

• Patient health simulations

• Data models and AI algorithms

• Lifelong data from diverse sources

• Real-time health information

• Continuous data comparison with:

• Population studies

• Data on specific pathologies

• Typical disease progress

• Medications and therapies for others

• Informed by evidence, guidelines, economics

• Facilitates holistic, personalized treatments

https://www.siemens-healthineers.com/perspectives/digital-patient-twin
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Data is key for outcome predictions in Digital Twins
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How to learn from data without sharing data

AUCValidate inLearn in 

0.61Liège (n=186)Aachen (n=7)

0.72Liège (n=186)Eindhoven (n=32)

0.68Liège (n=186)Hasselt (n=45)

0.75Liège (n=186)Maastricht (n=52)

0.77Liège (n=186)All 4 together (n=136)

?World (n=inf)All 5 together (n=322)
Clin Transl Radiat Oncol. 2017;19:24-31.
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Building a data community
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Rare cancers
Predicting outcomes in anal cancer patients using multi-centre data and distributed 

learning (N=281)* 

0.72 0.74 0.70Cox Model trained on all data :

* Radiotherapy and Oncology (2021) v159 p183-189, 

https://doi.org/10.1016/j.radonc.2021.03.013

atomCAT2

14 cancer centers

- Leeds, UK

- Oslo, Norway

- Maastricht, Netherlands

- Hull, UK

- Amsterdam , Netherlands

- Nicosia, Cyprus

- Cardiff, UK

- Lisbon, Portugal

- Rome, Italy

- Poznan, Poland

- Manchester, UK

- Oxford, UK

- Aachen, Germany

- Cambridge, UK

1428 patients
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ARGOS - (AR)tificial intelligence for (G)ross tumour v(O)lume 

(S)egmentation

• Fully open-sourced code for federated deep 

learning

• 24 institutional partners across 10 countries

• Executed legal agreements in multiple jurisdictions 

incl EU, Switzerland, US, China and India

• Inclusivity and diversity – low resource threshold for 

small clinics and LMICs; each contributes 200+ 

cases

• In-kind funding from participants
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Automated body composition analysis

• 3100 training and 

cross-validation from 

multicentre 

international cancer 

surgical dataset

• 2500 fully 

independent external 

test set

• TRIPOD type 4 

generalization study

• 680 independent test 

cases from 

polytrauma unit
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What makes patients similar?
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What makes patients similar?
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What makes patients similar?

"There were more differences between 

biopsies from the same tumor at the 

genetic level than there were similarities”

https://www.medscape.com/viewarticle/759877?0=reg=1 N Engl J Med 2012; 366:883-892
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What makes patients similar?

Joshi et al., 2022, Cell Reports 40, 111257
Margot Robbie & Emma Mackey
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What makes patients similar?

Nature?

• Similar genetics ->  similar 

facial features?

• Similar genetics -> Similar 

education, smoking, height, 

weight?

Nurture?

• Similar facial features -> 

similar education, smoking, 

height, weight?

• Similar education, smoking, 

height, weight -> similar facial 

features?

Joshi et al., 2022, Cell Reports 40, 111257
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What makes patients similar?

Zalay et al.  medRxiv. 2023 Sep 12;2023.09.12.23295132. 
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From Digital Twin to Evidence Based Medicine?
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From Correlation to Causality 
Turing Award 2011, Judea Pearl
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Observational Data, Bayesian Networks & Causality

Active therapy in localized prostate cancer – Dutch Cancer Registry

• RCT1 5%, RCT2 0% 10Y-OS gain

• SEER: ~10% 10Y-OS gain

• Active therapy (n=1.950) vs. observation 

(n=2.171) 

• Causal Blacklist (PSA → age) & whitelist (Tx → 

10Y-OS)

• Causal Diagram (Bayesian Network)

• Confounders: Age & year of diagnosis

• Bayesian Network: 1% 10Y-OS gain

• Cox corrected for confounders: 3% 10Y-OS gain

Sieswerda et al. JCO Clin Cancer Inform 7:e220008 | NEJM 352:1977 (2005) | NEJM 375:1415 (2016) | Cancer 112:2456 (2008)
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Colon cancer causal modeling

JCO Clin Cancer Inform. 2023 Sep:7:e2300080. 
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Key Messages

• Only RCT based evidence is not feasible, we need to have complementary 

evidence 

• Digital Twins are a collection of AIs -> to build them we need a lot of diverse 

data so sharing data effectively on a global scale is mandatory

• Digital Twins complement EBM but might even generate EBM using causal 

theory
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