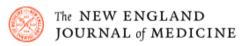


# BACK TO THE FUTURE: OLD AND NEW DRUGS IN HEAD AND NECK CANCER









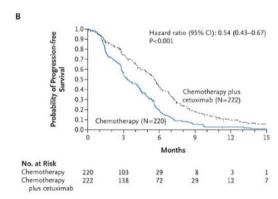

- Alessandra Cassano, MD, PhD
  - Oncologia Medica
- Università Cattolica del S. Cuore
- Fondazione Universitaria Policlinico Gemelli, IRCCS



#### The EGFR overexpression in head and neck cancer



September 11, 2008


N Engl J Med 2008; 359:1116-1127 DOI: 10.1056/NEJMoa0802656

#### Platinum-Based Chemotherapy plus Cetuximab in Head and Neck Cancer

Jan B. Vermorken, M.D., Ph.D., Ricard Mesia, M.D., Fernando Rivera, M.D., Ph.D., Eva Remenar, M.D., Andrzej Kawecki, M.D., Ph.D., Sylvie Rottey, M.D., Ph.D., Jozsef Erfan, M.D., Dmytro Zabolotnyy, M.D., Ph.D., Heinz-Roland Kienzer, M.D., Didier Cupissol, M.D., Frederic Peyrade, M.D., Marco Benasso, M.D., et al.



The median OS was 10.1 months in the cetuximab group and 7.4 months in the chemotherapy-alone group (hazard ratio for death, 0.80; P=0.04)



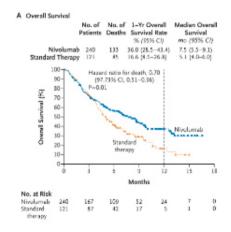
Median PFS was 5.6 months in the cetuximab group and 3.3 months in the chemotherapy-alone group (hazard ratio for progression, 0.54; P<0.001)

#### > Cancer Res (1993) Aug 1;53(15):3579-84.

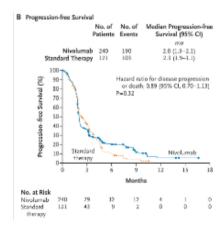
Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer

J R Grandis <sup>1</sup>, D J Tweardy

In 10 SCCHN cell lines, TGF-alpha mRNA was increased by a mean of 16-fold and EGFR mRNA levels were increased by a mean of 77-fold




#### Immunotherapy in head and neck checkmate 141




#### Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck

Robert L. Ferris, M.D., Ph.D., George Blumenschein, Jr., M.D., Jerome Fayette, M.D., Ph.D., Joel Guigay, M.D., A. Dimitrios Colevas, M.D., Lisa Licitra, M.D., Kevin Harrington, Ph.D., F.R.C.P., F.R.C.R., Stefan Kasper, M.D., Everett E. Vokes, M.D., Caroline Even, M.D., Francis Worden, M.D., Nabil F. Saba, M.D., et al.

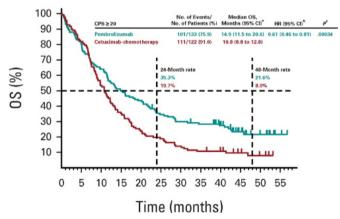


The median OS was 7.5 months in the nivolumab group versus 5.1 months HR 0.7 (p 0.01)

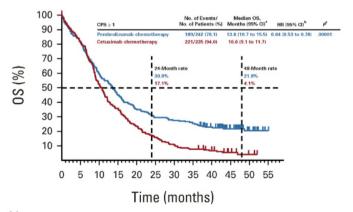


The median PFS was 2.0 months in the nivolumab group versus 2.3 months in the standard-therapy group




#### Immunotherapy in head and neck keynote 048

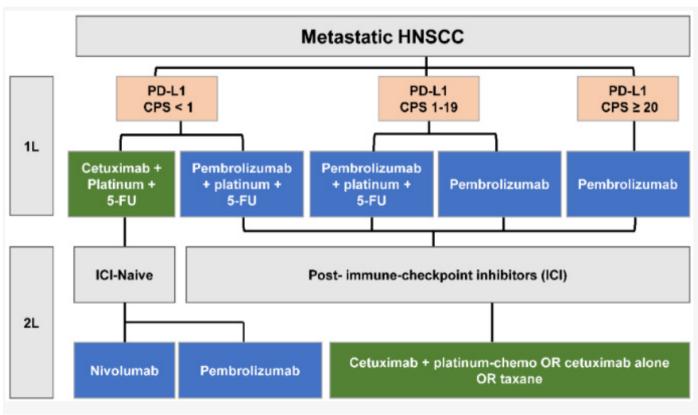





Pembrolizumab With or Without Chemotherapy in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: Updated Results of the Phase III KEYNOTE-048 Study






The median OS was 14.9 months for pembrolizumab alone versus 10.8 months for cetuximab-chemotherapy in the PD-L1 CPS  $\geq$  20 population (HR, 0.61)

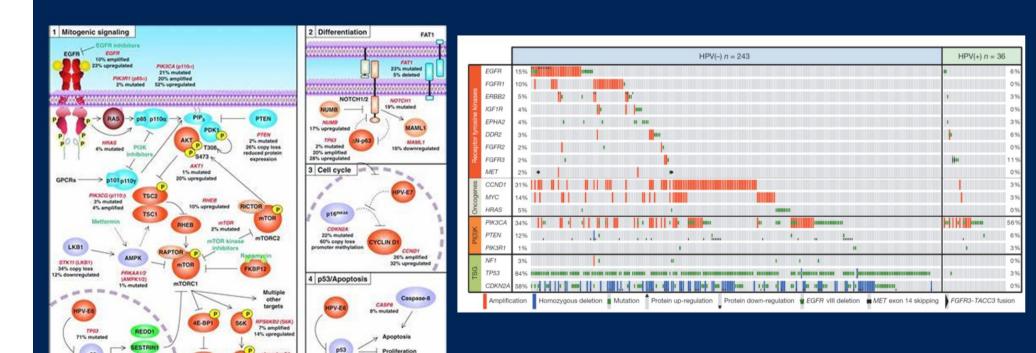


mOS for pembrolizumab+chemotherapy was 13.6 months versus 10.6 months for EXTREME in the CPS ≥ 1 population (HR, 0.64)



#### Current treatment of R/M head and neck squamous cell carcinoma

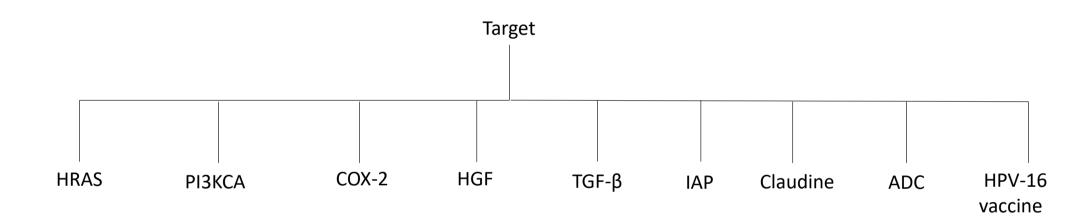





#### Recurrent/Metastatic HNSCC Treatment

- Single agent chemotherapeutic options after failure of first line therapy result in poor response rates (3-13% historically)
- HNSCC tumors often have high levels of mutations/alterations (especially HPV neg)
  - Response to novel targeted agents?
- HNSCC patients often have impaired immune functions but tumors with high T cell infiltration have superior survival outcomes
  - Can immune dysfunction be reversed?

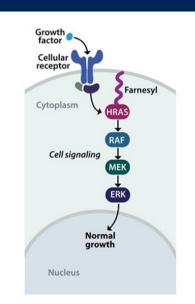



#### **Mutations and other Alterations in HNSCC**

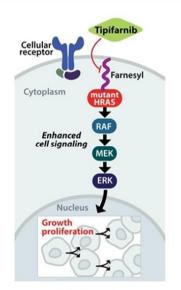


Iglesias-Bartolome et al, Cancer Discovery, 2013; The Cancer Genome Atlas network, Nature, 2015

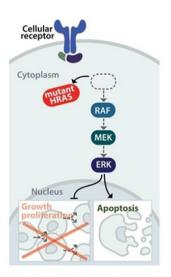



#### Personalized medicine in R/M head and neck squamous cell carcinoma THE GREAT CHALLENGE






#### **Tipifarnib (hRAS inhibitor)**

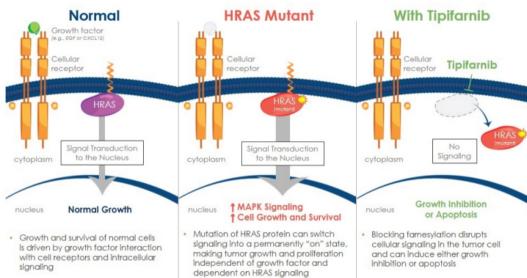

4-8% hRAS mutations in HNSCC

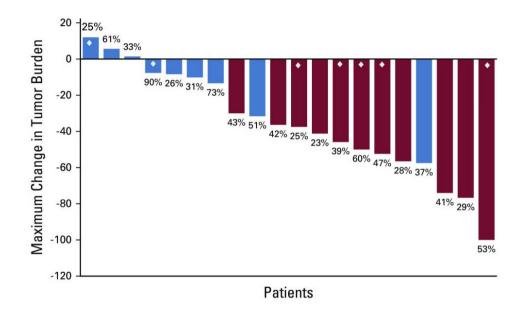


Growth and survival of normal cells is driven by growth factor interaction with cell receptors and intracellular signaling



Mutation of HRAS protein can switch signaling into a permanently "on" state, driving tumor growth and proliferation





Blocking farnesylation prevents membrane localization of HRAS, disrupting cellular signaling and inhibiting tumor growth

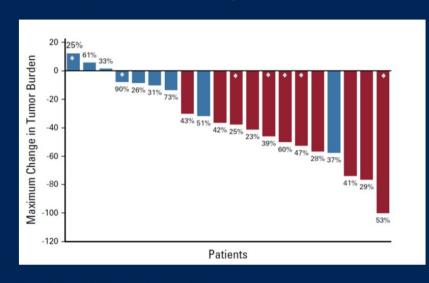


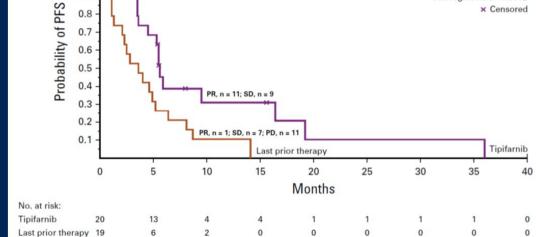


#### Farnesil-transferase inhibitor: old drug for a new target in head and neck






| Outcome                            | Median (months), % (95% CI), $n = 20^a$ |
|------------------------------------|-----------------------------------------|
| Objective response rate            | 55.0 (31.5 to 76.9)                     |
| PFS                                | 5.6 (3.6 to 16.4)                       |
| PFS - on last prior cancer therapy | 3.6 (1.3 to 5.2)                        |
| Overall survival                   | 15.4 (7.0 to 29.7)                      |


Tipifarnib: n = 20; median PFS = 5.6 months Last prior therapy: n = 19; median PFS = 3.6 months

Cox regression = 0.0012

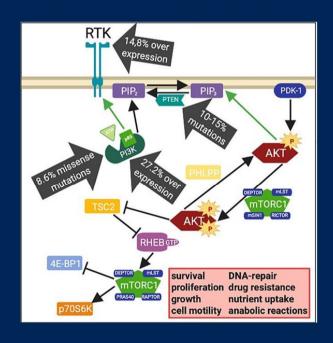


#### **Tipifarnib (hRAS inhibitor)**





- Open label phase II
- Limited to ≥ 20% hRAS variant allele frequency
- 55% ORR
- PFS of 5.6mo


• FDA Breakthrough Designation

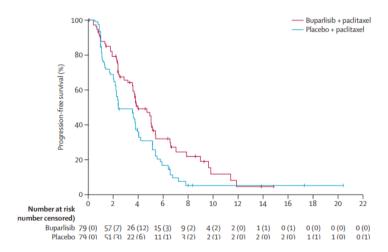
0.9

Ho, et al, JCO, 2021



#### **PI3K Inhibitors**




- High rate of PI3K mutations
  - 56% in HPV+
  - 39% in HPV-
- BERIL-1 Phase II randomized (158 pts)
   with paclitaxel and placebo vs paclitaxel
   and buparlisib (Pl3Ki)
  - PFS of 4.6 vs 3.5 mo in buparlisib group vs placebo
  - Phase III ongoing

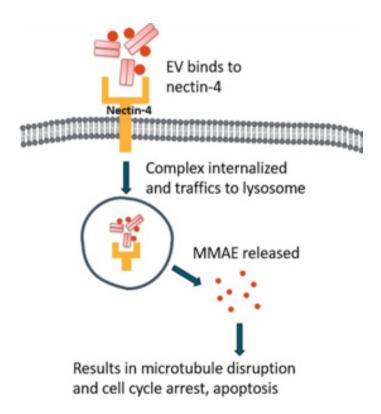
Marquard et al., Biochemical Pharmacology, 2020



#### PI3KCa inhibitor: Buparlisib

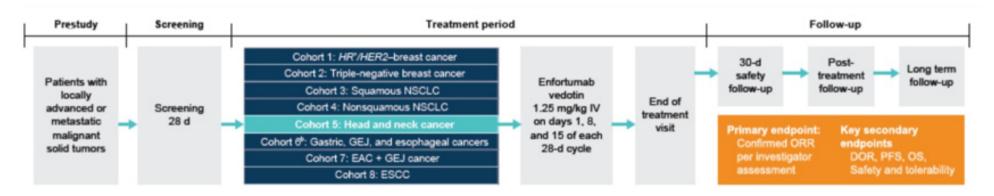
- BERIL-1 is a randomized phase II study. Evalueted buparlisib in combination with paclitaxel in patients with platinum pre-treated R/M HNSCC
  - ORR of 31% in the buparlisib group with a median PFS and OS of 4.5 and 10.4 months, respectively compared with 3.5 and 6.5 months in the placebo group, regardless of PI3KCa mutations




Results of the phase III BURAN trial are awaited...

|                                          | Buparlisib +<br>(n=79) | paclitaxel | Placebo + p<br>(n=79) | eclitaxel        | HR (95% CI)           |
|------------------------------------------|------------------------|------------|-----------------------|------------------|-----------------------|
|                                          | Patients (n)           | Events (n) | Patients (n)          | Events (n)       | F10                   |
| All patients                             | 79                     | 53         | 79                    | 60               | 0-72 (0-49-1-04       |
| HPV status (archival tissue)             |                        |            |                       |                  | and the second second |
| Negative                                 | 53                     | 39         | 62                    | 51               | 0-61 (0-40-0-92)      |
| Positive                                 | 17                     | 10         | 11                    | 6                | 1-63 (0-58-4-59)      |
| Previous lines of therapy                |                        |            |                       | i                |                       |
| 1                                        | 35                     | 22         | 37                    | z8               | 0-83 (0-47-1-45)      |
| 2                                        | 35                     | 24         | 35                    | 27               | 0.62 (0.35-1.08)      |
| a3                                       | 9                      | 7          | 7                     | 5                | 084 (0-26-2-72)       |
| Region                                   |                        |            |                       |                  |                       |
| Europe                                   | 48                     | 31         | 43                    | 32               | 0.73 (0.45-1.20)      |
| North America                            | 10                     | 8          | 11                    | 9                | 1-09 (0-41-2-91)      |
| Rest of world                            | 21                     | 14         | 25                    | 19               | 0-57 (0-28-1-15)      |
| ECOG performance status                  |                        |            |                       |                  |                       |
| 0                                        | 31                     | 17         | 25                    | 18               | 0.63 (0.33-1.23)      |
| 1                                        | 48                     | 36         | 53                    | 41               | 0.83 (0.53-1-31)      |
| Smoking history                          |                        |            |                       |                  |                       |
| Current                                  | 11                     | 6          | 17                    | 11               | 0.71 (0.26-1.94)      |
| Never or former                          | 68                     | 47         | 62                    | 49               | 069 (0.46-1.04)       |
| Alcohol status                           |                        |            |                       |                  |                       |
| <1 drink per day                         | 46                     | 34         | 49                    | 40               | 0.73 (0.46-1.16)      |
| >1 drink per day                         | 28                     | 17         | 30                    | 20               | 0.79 (0.41-1.50)      |
| Therapy for recurrent or metastatic dise | ase                    |            |                       | i                |                       |
| Chemotherapy                             | 33                     | 24         | 48                    | 39               | 069 (0.42-1.16)       |
| Chemotherapy + EGFR inhibitor            | 38                     | 24         | 29                    | 20               | 0-82 (0-45-1-48)      |
| Site of primary cancer                   |                        |            |                       |                  |                       |
| Hypopharynx                              | 13                     | 9          | 16                    | 14               | 0-37 (0-15-0-94)      |
| Laryrox                                  | 10                     | 6          | 15                    | 13               | 0-56 (0-21-1-50)      |
| Oral cavity                              | 23                     | 17         | 23                    | 18               | 0-55 (0-27-1-11)      |
| Oropharyrex                              | 26                     | 17         | 19                    | 30               | 1-65 (0-75-3-63)      |
| Other                                    | 6                      | 4          | 6                     | 5                | 0-56 (0-15-2-13)      |
| Best overall response to previous therap | y                      |            |                       | i                |                       |
| Non-progressive disease                  | 30                     | 18         | 29                    | 19               | 0-88 (0-46-1-68)      |
| Progressive disease                      | 36                     | 27         | 37                    | 30               | 0-53 (0-31-0-90)      |
|                                          |                        |            |                       | 01               | 1-0 10-0              |
|                                          |                        |            |                       | Favour bunarisib | Favours placebo       |




#### EV-202 The role of enfortumab vedotin in head and neck cancer

- Nectin-4 is a cell-adhesion molecule, and is expressed in 86.2% in head and neck cancers
- Enfortumab vedotin is an antibodydrug conjugated directed against Nectin-4 attached to Auristatine E, a microtubule disrupted agent.
- Enfortumab vedotin is already approved in the urotelial cancinoma





#### EV-202 Study design

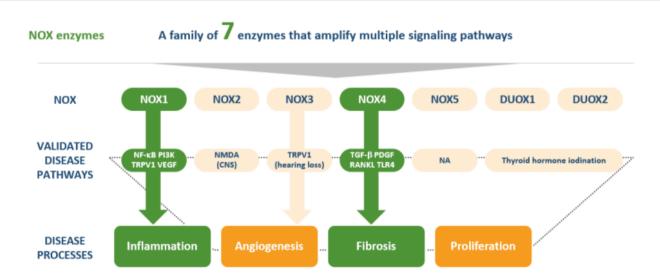


#### Key Eligibility

- Histologically or cytologically confirmed HNC except nasopharynx and salivary gland
- Progression/relapse on platinum for locally advanced or metastatic disease
- ≤2 lines cytotoxic systemic therapy
- Progressed/relapsed on PD-1/L1 inhibitor therapy
- Nectin-4 expression not required



#### EV-202 Study design


| Parameter/Variable         | Patients (N=46) |
|----------------------------|-----------------|
| Confirmed ORR <sup>a</sup> | 11 (23.9)       |
| 95% CI, <sup>b</sup> %     | 12.6–38.8       |
| Confirmed DCR <sup>c</sup> | 26 (56.5)       |
| 95% CI, <sup>b</sup> %     | 41.1–71.1       |
| BOR                        |                 |
| Confirmed CR               | 1 (2.2)         |
| Confirmed PR               | 10 (21.7)       |
| SD                         | 15 (32.6)       |
| Progressive disease        | 10 (21.7)       |
| Not evaluable <sup>d</sup> | 10 (21.7)       |

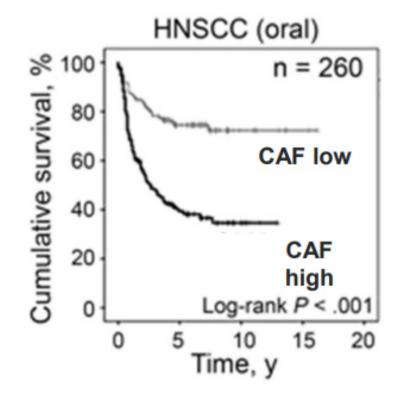
Median PFS 3.9 mo and median OS 5.98



#### NOX-1/4 inhibition setanaxib: mechanism of action

- Setanaxib is the first-in-class inhibitors of NOX and NAPPH protein
- NOX protein are extremely important for the differenzion of fibroblast into cancer assciated fibroblast (CAF)

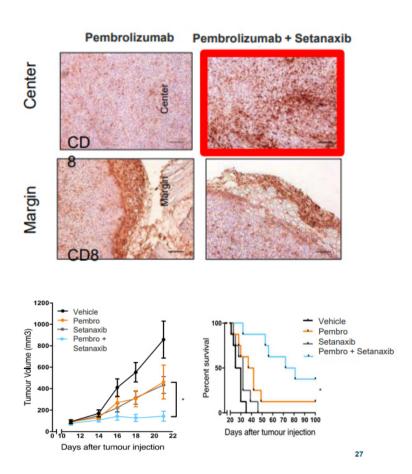





Setanaxib targets NOX1 & NOX4 to address inflammatory & fibrotic diseases

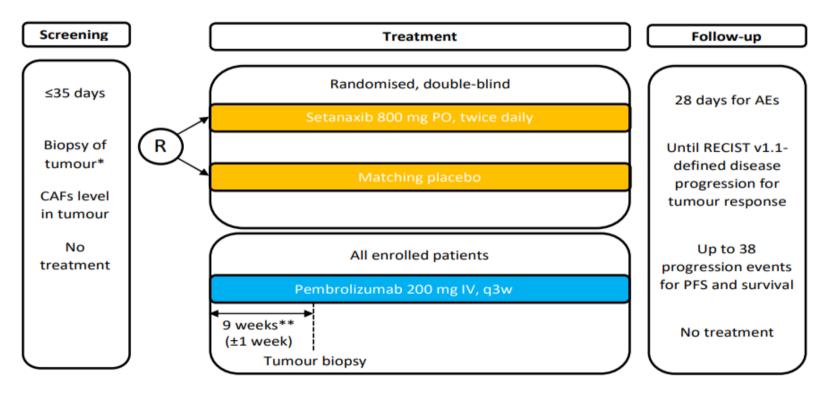


#### NOX-1/4 inhibition setanaxib: CAF levels are associated with prognosis


- High CAF numbers in a tumour results in exclusion of TILs from the tumour and result in a poor prognosis
- Cancer-associated fibroblast (CAFs) can be found in many solid tumours, and are essentially the same as activated myofibroblasts
- A relationship between the number of CAFs in the tumour and prognosis in SCCHN has been established

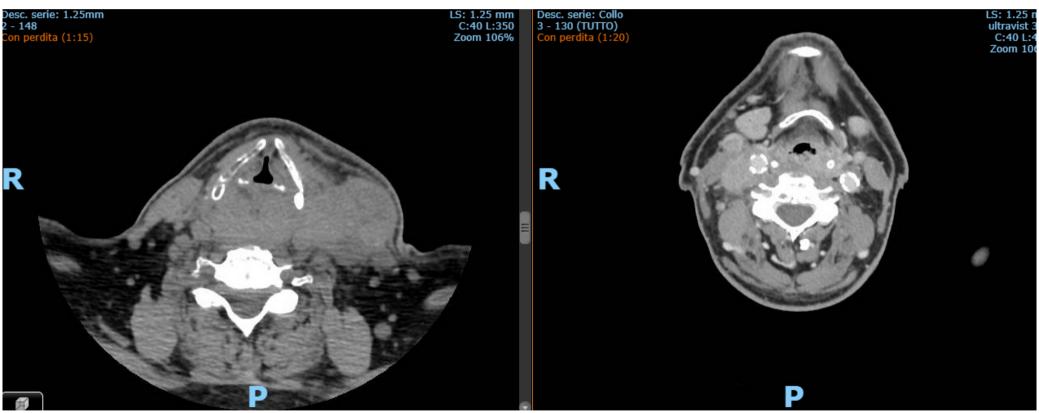





#### NOX-1/4 inhibition setanaxib: interaction of CAF and immune response

- Immunotherapy is not effective in highly fibrotic tumors
- CAF oppose immunotherapy by shielding tumors from T-cells
- Targeting CAF with setanaxib may restore response to immunotherapy
- Pre-clinical evidence suggest that treatment with Setanaxib + pembrolizumab results in an impovement in Overall survival and penetretion of TILs in the tumor






#### Phase II trial CALLIDITAS





#### Example in a patient for just TWO CYCLE!



07/2023 09/2023

#### COX-2-driven Cancer-inhibitory cancer-promoting inflammation inflammation PGE<sub>2</sub> IL-6 CXCL1 G-CSF Type I IFNs Immune Type I IFNs Immune Type I immunity infiltrate infiltrate Type I immunity T cell-dependent tumor control Progressive tumor growth

Zelenay S et al, Cell 2015

#### COX-2

#### In Brief

Cyclooxygenase-driven prostaglandin E2, produced by a variety of tumors, drives malignant growth through successful evasion of type I interferon and/or T-cell-dependent tumor elimination. A remarkable synergy between cyclooxygenase inhibitors and checkpoint blockade immunotherapy results in tumor eradication.



Fukuda Y, Cancer Res Commun, 2023





#### TRIAL SCHEMA

CRSF

1. Adult (>=18years)
2. HNSCC

(Platinum refractory/2<sup>nd</sup> line)
3. ECOG 0-2

#### **Triple Metronomic Chemotherapy**

Tab. Methotrexate 9 mg/m² weekly,
Tab Erlotinib 150 mg daily and Cap Celecoxib 200 mg
twice daily

#### **Stratification factors:**

Randomisation 1:1 ➤ Site

> PS

# Physician Choice treatment (NCCN based)

#### **TMC**

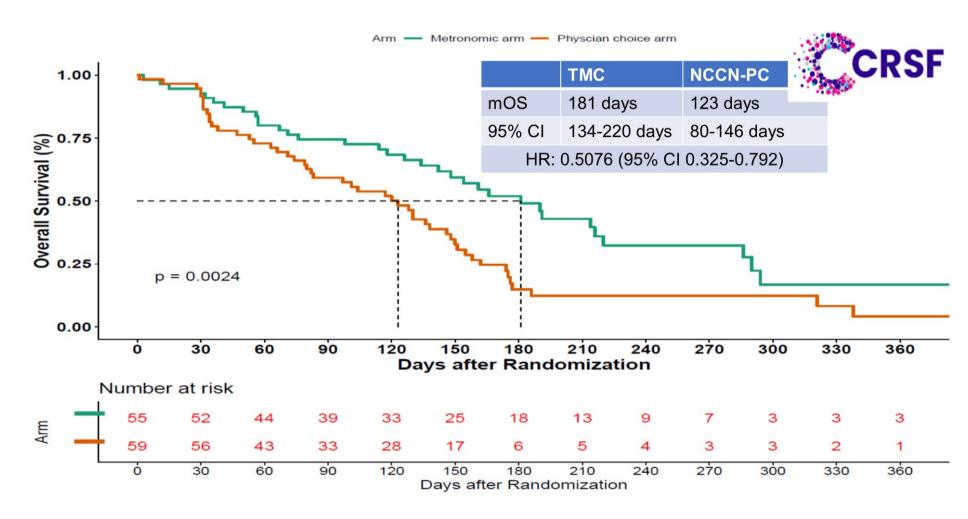
- ✓ Primary endpoint
- > OS
- ✓ Secondary endpoints
- > PFS
- > QOL
- Adverse events

#### **TMC** benefits

- Oral intake
- ↓ AEs
- ◆ 个QoL

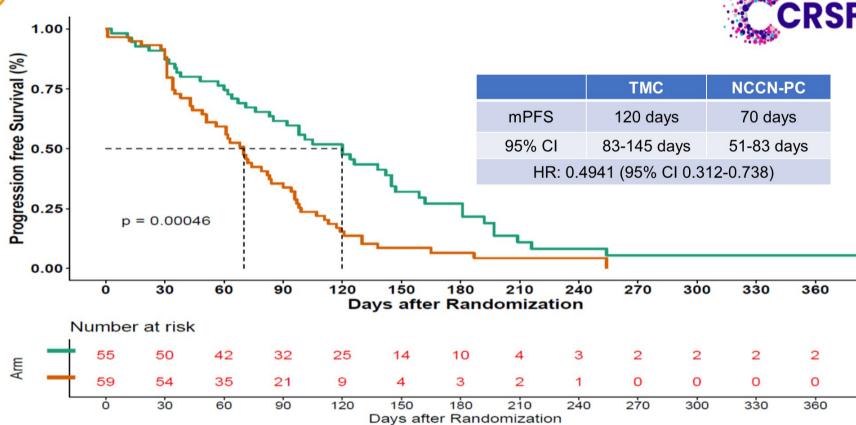
#### **Physician Choice:**

- Nivo/Pembro
- 5FU/Cape
- Taxane
- Cetuximab/Afatinib


- Response time assessment as per institutional standards
- Response assessment clinically/radiologically as per RECIST 1.1
- Adverse events assessed on every visit recorded in accordance with CTCAE version 5
- QOL at baseline, at 2 months and at 6 months by EORTC QLQ C30(v3) and EORTC QLQ HN 35














Arm - Metronomic arm - Physcian choice arm

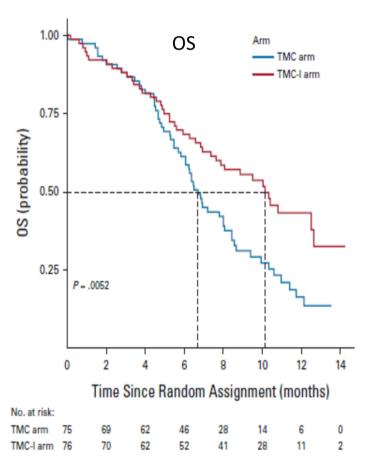


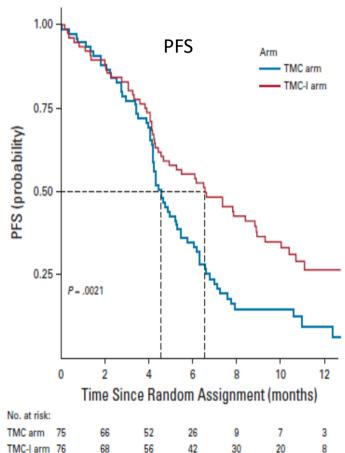




PRESENTED BY: DR. RUSHABH KOTHARI, MBBS, MD Medicine, DM Medical Oncology Presentation is properly of the author and ASCO. Permission required for reuse; contact permissions@asco.org.







#### $\mathsf{COX}$

# Low-Dose Immunotherapy in Head and Neck Cancer: A Randomized Study

Vijay Maruti Patil, MBBS, MD, DM¹; Vanita Noronha, MBBS, MD, DM¹; Nandini Menon, MBBS, MD, DNB¹; Rahul Rai, MBBS, MD¹; Atanu Bhattacharjee, PhD²; Ajay Singh, MBBS, MD, DM¹; Kavita Nawale, PDCR¹; Shweta Jogdhankar, MSc¹; Rupali Tambe, BCom¹; Sachin Dhumal, BHMS¹; Riddhi Sawant, PDCR¹; Mitali Alone, MSc¹; Devanshi Karla, MSc¹; Zoya Peelay, MSc¹; Shruti Pathak, MSc¹; Arun Balaji, MASLP³; Suman Kumar, MBBS, DNB⁴; Nilendu Purandare, MBBS, DNB⁵; Archi Agarwal, MBBS, DNB⁵; Ameya Puranik, MBBS, DNB⁵; Abhishek Mahajan, MBBS, DNB⁴; Amit Janu, MBBS, DNB⁴; Gunjesh Kumar Singh, MBBS, MD, DM¹; Neha Mittal, MBBS, MD⁶; Subhash Yaday, MBBS, MD⁶; Shripad Banavali, MBBS, MD¹; and Kumar Prabhash, MBBS, MD, DM¹







#### **Nivolumab**


20 mg flat dose once every 3 weeks

#### **Primary Endpoint 1y-OS**

1y-OS TMC = 16.3% (95% CI 8% - 27.4%) 1 y OS TMC-I = 43.4% (95% CI 30.8% - 55.3%) p=0.0036

mOS TMC = 6.7 months (95% CI 5.8 – 8.1) mOS TMC-I = 10.1 months (95% CI 7.4 – 12.6) p = 0.0052

Patil V et al, J Clin Oncol 2022



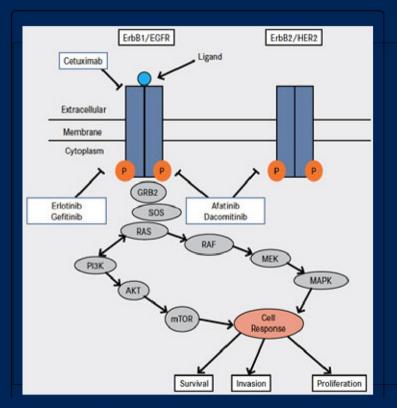
## Claudin



Review

Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value:

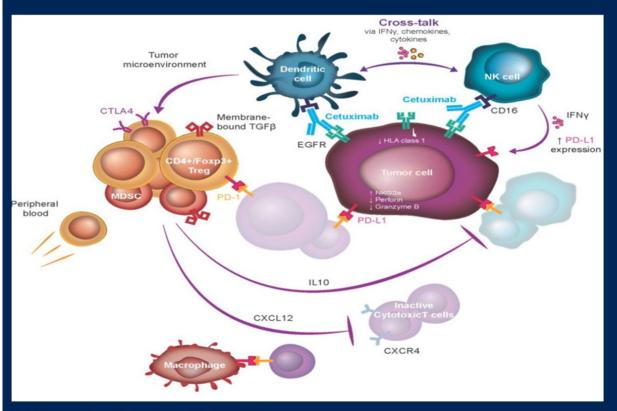
A Narrative Review


Tarek Ziad Arabi <sup>1</sup>, Linah Abdulmohsen Algheryafi <sup>1</sup>, Nora A. Alodah <sup>1</sup>, Hamza M. Kossai Enabi <sup>1</sup>, Amjad Abdullah Alshehry <sup>1</sup> and Abderrahman Ouban <sup>1,2,\*</sup>

Cancers, 2023



#### **EGFR** inhibitors

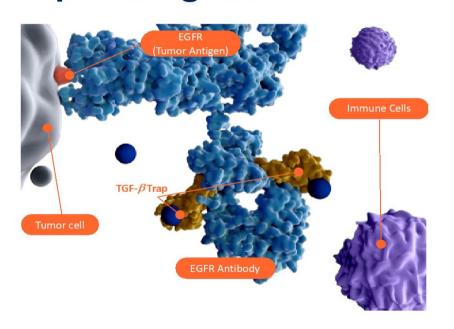

- Afatinib
  - Small molecule inhibitor (pan-ERB)
  - ~10% ORR
- Cetuximab
  - Recombinant Chimeric Antibody
  - 14% ORR as single agent
  - Chemotherapy combinations



Denaro et al, Journal of Oncology Translational Research, 2015



#### **EGFR and PD-1 inhibitor Combinations**



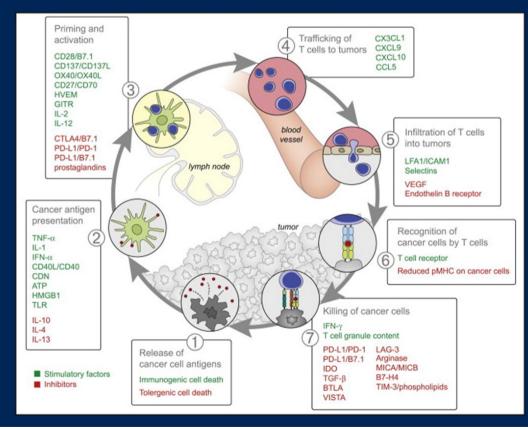

- Phase II pembrolizumab and cetuximab
  - 45% ORR
- Phase II afatinib and pembrolizumab
  - 41% ORR
- Phase II avelumab and cetuximab
  - 50% ORR

Ferris, R. L. et al. Cancer Treatment Reviews 63, 48–60 (2018) Sacco et al, Lancet Oncology, 2021; Kao et al., CCR, 2022; Forster et al, Annals of Oncology, 2020

### **Bispecific Antibodies**

# BCA101: Targeting a TGF-β trap to EGFR expressing tumors




#### Proposed mechanisms of action

- Localizes TGF-β inhibition to the TME through an EGFR-directed approach
- Aims to increase anti-tumor activity via enhanced ADCC and increased NK cell activation
- 3. Dual inhibition of EGFR and TGF-β prevents epithelial-mesenchymal transition (EMT) and metastasis



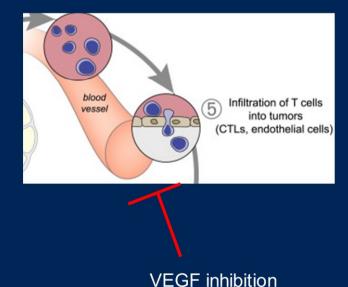
#### **Immune Activators/Inhibitors**

Chen and Mellman, Immunity 2013





#### VEGF inhibition in combination with $\alpha$ PD-1


| TABLE 4. Efficacy Outcomes (inve<br>Parameter | (investigator review, immune-related RECIST)  RCC Endometrial  (n = 30) (n = 23) |                 | SCCHN<br>(n = 22) | Melanoma<br>(n = 21) | NSCLC<br>(n = 21) | Urothelial (n = 20) |  |
|-----------------------------------------------|----------------------------------------------------------------------------------|-----------------|-------------------|----------------------|-------------------|---------------------|--|
| Best overall response                         |                                                                                  |                 |                   |                      |                   |                     |  |
| Complete response                             | 0 (0)                                                                            | 2 (9)           | 1 (5)             | 1 (5)                | 1 (5)             | 1 (5)               |  |
| Partial response                              | 21 (70)                                                                          | 10 (44)         | 9 (41)            | 9 (43)               | 6 (29)            | 4 (20)              |  |
| Stable disease                                | 8 (27)                                                                           | 10 (44)         | 10 (46)           | 7 (33)               | 10 (48)           | 9 (45)              |  |
| Progressive disease                           | 1 (3)                                                                            | 1 (4)           | 0 (0)             | 3 (14)               | 2 (10)            | 2 (10)              |  |
| Unknown                                       | 0 (0)                                                                            | 0 (0)           | 2 (9)             | 1 (5)                | 2 (10)            | 4 (20)              |  |
| ORR <sup>3</sup>                              | 21 (70)                                                                          | 12 (52)         | 10 (46)           | 10 (48)              | 7 (33)            | 5 (25)              |  |
| (95% CI)                                      | (50.6 to 85.3)                                                                   | (30.6 to 73.2)  | (24.4 to 67.8)    | (25.7 to 70.2)       | (14.6 to 57.0)    | (8.7 to 49.1)       |  |
| ORR <sub>Week24</sub>                         | 19 (63)                                                                          | 12 (52)         | 8 (36)            | 10 (48)              | 7 (33)            | 5 (25)              |  |
| (95% CI)                                      | (43.9 to 80.1)                                                                   | (30.6 to 73.2)  | (17.2 to 59.3)    | (25.7 to 70.2)       | (14.6 to 57.0)    | (8.7 to 49.1)       |  |
| Median DOR, months (95% CI)                   | 20.0 (9.0 to 22.9)                                                               | NE (2.6 to NE)  | 3.2 (2.2 to 12.6  | 12.5 (2.7 to NE)     | 10.9 (2.4 to NE)  | NE (6.5 to NE)      |  |
| Median PFS, months (95% CI)                   | 19.8 (9.9 to 24.1)                                                               | 9.7 (4.2 to NE) | .7 (4.0 to 9.8    | 5.5 (2.6 to 15.8)    | 5.9 (2.3 to 13.8) | 5.4 (1.3 to NE)     |  |

NOTE. Values are presented as No. (%) unless otherwise indicated.

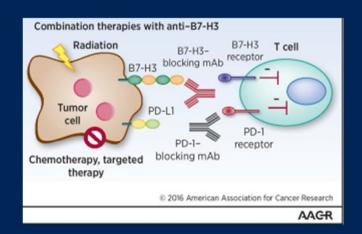
Abbreviations: DOR, duration of response; NE, not evaluable; NSCLC, non-small-cell lung cancer; ORR, objective response rate; ORR<sub>week24</sub>, objective response rate at week 24; PFS, progression-free survival; RCC, renal cell carcinyma; SCCHN, squamous cell carcinoma of the head and neck.

"ORR is defined as the proportion of patients who had a confirmed complete or patient esponse per independent review by immune-related RECIST at the time of data cutoff. Four patients achieved a response after week 24 (2 patients in the RCC cohort and 2 patients in the SCCHN cohort).

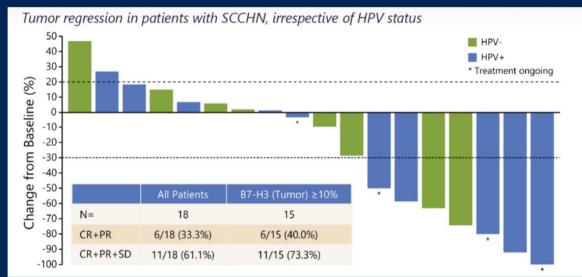
<sup>b</sup>Two patients in the NSCLC cohort with a response (1 complete response and 1 partial response) had received prior programmed cell death-1/programmed cell death-ligand 1 therapy (both nivolumab).



36% ORR


LEAP 009 and 010 Studies Ongoing

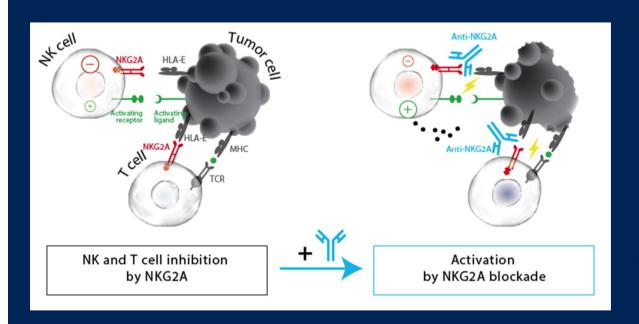



**Other Immune Checkpoint Inhibitors** 



#### **B7-H3 Antibody Enoblituzumab with Pembrolizumab**



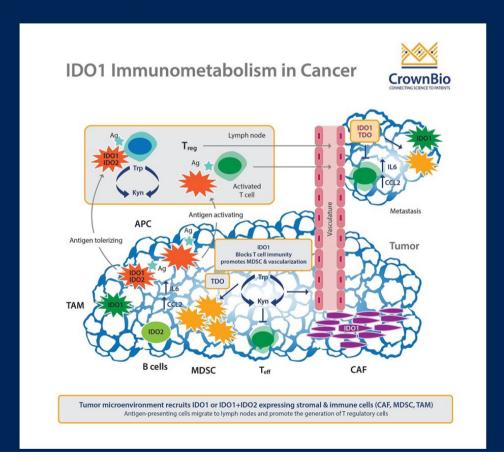

Induces ADCC



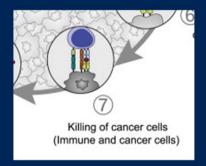
Aggarwal et al., SITC, 2018 his presentation is the property of the author, licensed by ASCO. Permission required for reuse.



#### **NKG2A Blockade- Monalizumab**

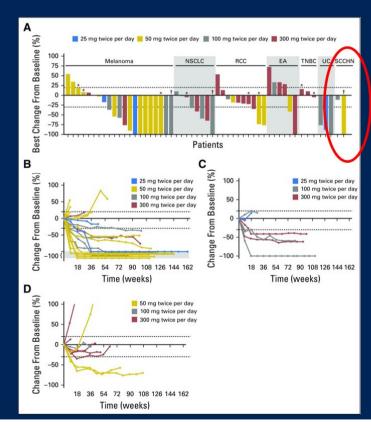



- Phase II study of monalizumab and cetuximab
  - ORR of 36% in IO naïve and 17% in IO pretreated patients
  - 12-month OS estimate of 44%
- Phase III and other combinations ongoing


Innate Pharma; Cohen et al, Annals of Oncology, 2019



#### **Tumor Microenvironment**




- Upregulation of IDO1 is a potential mechanism to evade immunosurveillance
  - ↓ Tryptophan ↑ Kynurenine
  - $\downarrow$   $T_{\text{eff}}$  and NK cells
  - $-\uparrow T_{reg}$  cells, MDSCs, TAMs

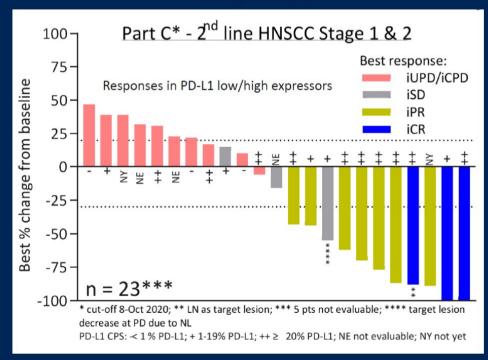




#### **Epadacostat + Pembrolizumab in Solid Tumors**



- Did not move forward due to failure to meet the primary endpoint in melanoma
- Novel inhibitors/ combinations in development


Mitchell et al., JCO 2018



#### TIM-3/LAG-3

# APCs MHC PD-L1 PD-L2 PD-L1 PD-L1 PD-L1 PD-L2 PD-L2 PD-L1 PD-L2 PD-L2 PD-L2 PD-L1 PD-L2 PD-L2

#### TACTI-002



Pulido, Cancer Cell 2013; Long, Genes and Cancer, 2018; Krebs et al., SITC 2020



# Other Promising Targets and Therapies in Clinical Trials

- Toll-like Receptors
- TGF-β
- SMAC inhibitors
- NOTCH1 loss- NOTCH1 inhibitor
  - (NCT03740100)
- ATMi, PARPi and other DNA damage modifiers
- Novel delivery systems
- Many others forthcoming



#### **Conclusions**

In Immuno-Oncology era, a chemo-free approach is still not realistic for most HNSCC!

Chemotherapy plus anti-EGFR (e.g. extreme-like regimens) still mantain a key role in R/M HNSCC (i.e. CPS PD-L1<1 or CPS PD-L1≥1 not eligible for I-line SOC and requiring tumor shrinkage)

To date, the comprehensive molecular profiling of HNSCC should be limited to clinical trials setting

The identification of new targets could be exploited to develop new drugs (i.e. ADC and bispecific antibodies as the most promising!)